

The Technical Reference section includes articles covering regulator theory, sizing, selection, overpressure protection, and other topics relating to regulators. This section begins with the basic theory of regulators and ends with conversion tables and other informative charts.

This section is for general reference only. For more detailed information please visit www.emersonprocess.com/regulators or contact your local Sales Office.

TECHNICAL

Table of Contents

Regulator Control Theory
Fundamentals of Gas Pressure Regulators 577
Pilot-Operated Regulators 578
Conclusion 578
Regulator Components
Straight Stem Style Direct-Operated 579
Lever Style Direct-Operated 580
Loading Style (Two-Path Control) Pilot-Operated 581
Unloading Style Pilot-Operated 582
Introduction to Regulators
Specific Regulator Types 583
Pressure Reducing Regulators 583
Backpressure Regulators and Relief Valves 584
Pressure Switching Valves 584
Vaccum Regulators and Breakers 584
Types of Regulators 583
Direct-Operated (Self-Operated) Regulators 583
Pilot-Operated Regulators 583
Regulator Selection Criteria 584
Control Application 585
Pressure Reducing Regulator Selection 585
Outlet Pressure to be Maintained 585
Inlet Pressure of the Regulator 585
Capacity Required 585
Shutoff Capability 585
Process Fluid 585
Process Fluid Temperature 585
Accuracy Required 586
Pipe Size Required 586
End Connection Style 586
Required Materials 586
Control Lines 586
Stroking Speeds 586
Overpressure Protection 586
Regulator Replacement 586
Regulator Price 587
Backpressure Regulator Selection 587
Relief Valve Selection 587

Theory

Principles of Direct-Operated Regulators

Introduction 588
Regulator Basics 588
Essential Elements 588
Restricting Element 589
Measuring Element 589
Loading Element 589
Regulator Operation 589
Increasing Demand 589
Decreasing Demand 589
Weights versus Springs 589
Spring Rate 590
Equilibrium with a Spring 590
Spring as Loading Element 590
Throttling Example 590
Regulator Operation and P_{2} 591
Regulator Performance 591
Performance Criteria 59
Setpoint 591
Droop 591
Capacity 591
Accuracy 591
Lockup 591
Spring Rate and Regulator Accuracy 592
Spring Rate and Droop 592
Effect on Plug Travel 592
Light Spring Rate 592
Practical Limits 592
Diaphragm Area and Regulator Accuracy 592
Diaphragm Area 592
Increasing Diaphragm Area 593
Diaphragm Size and Sensitivity 593
Restricting Element and Regulator Performance 593
Critical Flow 593
Orifice Size and Capacity 594
Orifice Size and Stability 594
Orifice Size, Lockup, and Wear 594
Orifice Guideline 594
Increasing P 594
Factors Affecting Regulator Accuracy 594
Performance Limits 594
Cycling 594
Design Variations 594
Improving Regulator Accuracy with a Pitot Tube 595
Numerical Example 595
Decreased Droop (Boost) 595
Improving Performance with a Lever 595

TECHNICAL

Table of Contents

Principles of Pilot-Operated Regulators
Pilot-Operated Regulator Basics 596
Regulator Pilots 596
Gain 596
Identifying Pilots 596
Setpoint 596
Spring Action 596
Pilot Advantage 596
Gain and Restrictions 596
Stability 596
Restrictions, Response Time, and Gain 597
Loading and Unloading Designs 597
Two-Path Control (Loading Design) 597
Two-Path Control Advantages 598
Unloading Control 598
Unloading Control Advantages 598
Performance Summary 598
Accuracy 598
Capacity 598
Lockup 599
Applications 599
Two-Path Control 599
Type 1098-EGR 599
Type 99 600
Unloading Design 600
Selecting and Sizing Pressure Reducing Regulators
Introduction 601
Quick Selection Guides 601
Product Pages 601
The Role of Experience 601
Special Requirements 601
Sizing Equations 601
General Sizing Guidelines 602
Body Size 602
Construction 602
Pressure Ratings 602
Wide-Open Flow Rate 602
Outlet Pressure Ranges and Springs 602
Accuracy 602
Inlet Pressure Losses 602
Orifice Diameter 602
Speed of Response 602
Turn-Down Ratio 602
Sizing Exercise: Industrial Plant Gas Supply 602
Quick Selection Guide 603
Product Pages 603
Final Selection 603

Overpressure Protection Methods

Methods of Overpressure Protection 604
Relief Valves 604
Types of Relief Valves 604
Advantages 604
Disadvantages 604
Monitoring Regulators 605
Advantages 605
Disadvantages 605
Working Monitor 605
Series Regulation 605
Advantages 606
Disadvantages 606
Shutoff Devices 606
Advantages 606
Disadvantages 606
Relief Monitor 606
Summary 607
Principles of Relief Valves
Overpressure Protection 608
Maximum Pressure Considerations 608
Downstream Equipment 608
Main Regulator 608
Piping 608
Relief Valves 608
Relief Valve Popularity 609
Relief Valve Types 609
Selection Criteria 609
Pressure Build-up 609
Periodic Maintenance 609
Cost versus Performance 609
Installation and Maintenance Considerations 609
Pop Type Relief Valve 609
Operation 609
Typical Applications 610
Advantages 610
Disadvantage 610
Direct-Operated Relief Valves 610
Operation 610
Product Example 611
Typical Applications 611
Selection Criteria 611
Pilot-Operated Relief Valves 612
Operation 612
Product Example 612
Performance 613
Typical Applications 613
Selection Criteria 613

TECHNICAL

Table of Contents

Internal Relief 613
Operation 613
Product Example 613
Performance and Typical Applications 614
Selection Criteria 614
Selection and Sizing Criteria 614
Maximum Allowable Pressure 614
Regulator Ratings 614
Piping 614
Maximum Allowable System Pressure 614
Determining Required Relief Valve Flow 614
Determine Constant Demand 615
Selecting Relief Valves 615
Required Information 615
Regulator Lockup Pressure 615
Identify Appropriate Relief Valves 615
Final Selection 615
Applicable Regulations 615
Sizing and Selection Exercise 615
Initial Parameters 615
Performance Considerations 615
Upstream Regulator 615
Pressure Limits 615
Relief Valve Flow Capacity 615
Relief Valve Selection 616
Principles of Series Regulation and Monitor Regulators
Series Regulation 617
Failed System Response 617
Regulator Considerations 617
Applications and Limitations 617
Upstream Wide-Open Monitors 617
System Values 617
Normal Operation 617
Worker Regulator B Fails 618
Equipment Considerations 618
Downstream Wide-Open Monitors 618
Normal Operation 618
Worker Regulator A Fails 618
Upstream Versus Downstream Monitors 618
Working Monitors 618
Downstream Regulator 619
Upstream Regulator 619
Normal Operation 619
Downstream Regulator Fails 619
Upstream Regulator Fails 619
Sizing Monitor Regulators 619
Estimating Flow when Pressure Drop is Critical 619
Assuming $\mathrm{P}_{\text {intermediate }}$ to Determine Flow 619
Fisher Monitor Sizing Program 619
Vacuum Control
Vacuum Applications 620
Vacuum Terminology 620
Vacuum Control Devices 620
Vacuum Regulators 620
Vacuum Breakers (Relief Valves) 620
Vacuum Regulator Installation Examples 622
Vacuum Breaker Installation Examples 623
Gas Blanketing in Vacuum 625
Features of Fisher ${ }^{\text {® }}$ Brand Vacuum Regulators and Breakers 625
Valve Sizing Calculations (Traditional Method)
Introduction 626
Sizing for Liquid Service 626
Viscosity Corrections 626
Finding Valve Size 626
Nomograph Instructions 627
Nomograph Equations 627
Nomograph Procedure 627
Predicting Flow Rate 628
Predicting Pressure Drop 628
Flashing and Cavitation 628
Choked Flow 629
Liquid Sizing Summary 631
Liquid Sizing Nomenclature 631
Sizing for Gas or Steam Service 632
Universal Gas Sizing Equation 632
General Adaptation for Steam and Vapors 633
Special Equation for Steam Below 1000 psig 633
Gas and Steam Sizing Summary 634
Valve Sizing (Standardized Method)
Introduction 635
Liquid Sizing 635
Sizing Valves for Liquids 635
Liquid Sizing Sample Problem 638
Gas and Steam Sizing 641
Sizing Valves for Compressible Fluids 64
Compressible Fluid Sizing Sample Problem 642
Temperature Considerations
Cold Temperature Considerations
Regulators Rated for Low Temperatures 647
Selection Criteria 647

TECHNICAL

Table of Contents

Freezing
Introduction 648
Reducing Freezing Problems 648
Heat the Gas 648
Antifreeze Solution 648
Equipment Selection 648
System Design 649
Water Removal 649
Summary 649
Sulfide Stress Cracking—NACE MR0175-2002, MR0175/ISO 15156
The Details 550
New Sulfide Stress Cracking Standards For Refineries 651
Responsibility 651
Applicability of NACE MR0175/ISO 15156 651
Basics of Sulfide Stress Cracking (SSC) and Stress Corrosion Cracking (SCC) 651
Carbon Steel 652
Carbon and Low-Alloy Steel
653
653
Welding Hardness Requirements
Welding Hardness Requirements 653
Cast Iron 653
Stainless Steel 653
400 Series Stainless Steel 653
300 Series Stainless Steel 653
S20910 654
CK3MCuN 654
S17400 654
Duplex Stainless Steel 654
Highly Alloyed Austenitic Stainless Steels 654
Nonferrous Alloys 655
Nickel-Base Alloys 655
Monel ${ }^{\circledR}$ K500 and Inconel ${ }^{\circledR}$ X750 655
Cobalt-Base Alloys 655
Aluminum and Copper Alloys 656
Titanium 656
Zirconium 656
Springs 656
Coatings 656
Stress Relieving 656
Bolting 656
Bolting Coatings 657
Composition Materials 657
Tubulars 657
Expanded Limits and Materials 657
Codes and Standards 658
Certifications 658
Reference
Chemical Compatibility of Elastomers and Metals
Introduction 659
Elastomers: Chemical Names and Uses 659
General Properties of Elastomers 660
Fluid Compatibility of Elastomers 661
Compatibility of Metals 662
Regulator Tips
Regulator Tips 664
Conversions, Equivalents, and Physical Data
Pressure Equivalents 666
Pressure Conversion - Pounds per Square Inch
(PSI) to Bar 666
Volume Equivalents 666
Volume Rate Equivalents 667
Mass Conversion-Pounds to Kilograms 667
Temperature Conversion Formulas 667
Area Equivalents 667
Kinematic-Viscosity Conversion Formulas 667
Conversion Units 668
Other Useful Conversions 668
Converting Volumes of Gas 668
Fractional Inches to Millimeters 669
Length Equivalents 669
Whole Inch-Millimeter Equivalents 669
Metric Prefixes and Symbols 669
Greek Alphabet 669
Length Equivalents - Fractional and Decimal Inches to Millimeters 670
Temperature Conversions 671
A.P.I. and Baumé Gravity Tables and Weight Factors 674
Characteristics of the Elements 675
Recommended Standard Specifications for Valve Materials Pressure-Containing Castings 676
Physical Constants of Hydrocarbons 679
Physical Constants of Various Fluids 680
Properties of Water 682
Properties of Saturated Steam 682
Properties of Saturated Steam-Metric Units 685
Properties of Superheated Steam 686
Determine Velocity of Steam in Pipes 689
Recommended Steam Pipe Line Velocities 689
Typical Condensation Rates in Insulated Pipes 689
Typical Condensation Rates without Insulation 689

Technical

Table of Contents

Flow of Water Through Schedule 40 Steel Pipes 690
Flow of Air Through Schedule 40 Steel Pipes 692
Average Properties of Propane 694
Orifice Capacities for Propane 694
Standard Domestic Propane Tank Specifications 694
Approximate Vaporization Capacities of Propane Tanks 694
Pipe and Tubing Sizing 695
Vapor Pressures of Propane 695
Converting Volumes of Gas 695
BTU Comparisons 695
Capacities of Spuds and Orifices 696
Kinematic Viscosity - Centistokes 699
Specific Gravity of Typical Fluids vs Temperature 700
Effect of Inlet Swage On Critical Flow C_{g} Requirements 701
Seat Leakage Classifications 702
Nominal Port Diameter and Leak Rate 702
Flange, Valve Size, and Pressure-Temperature Rating Designations 703
Equivalency Table 704
Pressure-Temperature Ratings for Valve Bodies 704
ASME Face-To-Face Dimensions for Flanged Regulators 706
Diameter of Bolt Circles 706
Wear and Galling Resistance Chart of Materia
Combinations 707
Equivalent Lengths of Pipe Fittings and Valves 707
Pipe Data: Carbon and Alloy Steel-Stainless Stee 708
American Pipe Flange Dimensions 710
EN 1092-1 Cast Steel Flange Standards 710
EN 1092-1 Pressure/Temperature Ratings for Cast Steel Valve Ratings 711
Drill Sizes for Pipe Taps 712
Standard Twist Drill Sizes 712
Glossary
Glossary of Terms 713

TECHNICAL

Regulator Control Theory

Fundamentals of Gas Pressure Regulators

The primary function of any gas regulator is to match the flow of gas through the regulator to the demand for gas placed upon the system. At the same time, the regulator must maintain the system pressure within certain acceptable limits.
A typical gas pressure system might be similar to that shown in Figure 1, where the regulator is placed upstream of the valve or other device that is varying its demand for gas from the regulator.

Figure 1
If the load flow decreases, the regulator flow must decrease also. Otherwise, the regulator would put too much gas into the system, and the pressure $\left(\mathrm{P}_{2}\right)$ would tend to increase. On the other hand, if the load flow increases, then the regulator flow must increase also in order to keep P_{2} from decreasing due to a shortage of gas in the pressure system.
From this simple system it is easy to see that the prime job of the regulator is to put exactly as much gas into the piping system as the load device takes out.
If the regulator were capable of instantaneously matching its flow to the load flow, then we would never have major transient variation in the pressure $\left(\mathrm{P}_{2}\right)$ as the load changes rapidly. From practical experience we all know that this is normally not the case, and in most real-life applications, we would expect some fluctuations in P_{2} whenever the load changes abruptly.
Because the regulator's job is to modulate the flow of gas into the system, we can see that one of the essential elements of any regulator is a restricting element that will fit into the flow stream and provide a variable restriction that can modulate the flow of gas through the regulator.
Figure 2 shows a schematic of a typical regulator restricting element. This restricting element is usually some type of valve arrangement. It can be a single-port globe valve, a cage style valve, butterfly valve, or any other type of valve that is capable of operating as a variable restriction to the flow.
In order to cause this restricting element to vary, some type of loading force will have to be applied to it. Thus we see that the second essential element of a gas regulator is a Loading Element that can apply the needed force to the restricting element.

The loading element can be one of any number of things such as a weight, a hand jack, a spring, a diaphragm actuator, or a piston actuator, to name a few of the more common ones.

A diaphragm actuator and a spring are frequently combined, as shown in Figure 3, to form the most common type of loading element. A loading pressure is applied to a diaphragm to produce a loading force that will act to close the restricting element. The spring provides a reverse loading force which acts to overcome the weight of the moving parts and to provide a fail-safe operating action that is more positive than a pressure force.

Figure 2
So far, we have a restricting element to modulate the flow through the regulator, and we have a loading element that can apply the necessary force to operate the restricting element. But, how do we know when we are modulating the gas flow correctly? How do we know when we have the regulator flow matched to the load flow? It is rather obvious that we need some type of Measuring Element which will tell us when these two flows have been perfectly matched. If we had some economical method of directly measuring these flows, we could use that approach; however, this is not a very feasible method.
We noted earlier in our discussion of Figure 1 that the system pressure $\left(\mathrm{P}_{2}\right)$ was directly related to the matching of the two flows. If the restricting element allows too much gas into the system, P_{2} will increase. If the restricting element allows too little gas into ${ }^{2}$ the system, P_{2} will decrease. We can use this convenient fact to provide a simple means of measuring whether or not the regulator is providing the proper flow.

Figure 3

Regulator Control Theory

Manometers, Bourdon tubes, bellows, pressure gauges, and diaphragms are some of the possible measuring elements that we might use. Depending upon what we wish to accomplish, some of these measuring elements would be more advantageous than others. The diaphragm, for instance, will not only act as a measuring element which responds to changes in the measured pressure, but it also acts simultaneously as a loading element. As such, it produces a force to operate the restricting element that varies in response to changes in the measured pressure. If we add this typical measuring element to the loading element and the restricting element that we selected earlier, we will have a complete gas pressure regulator as shown in Figure 4.

Figure 4
Let's review the action of this regulator. If the restricting element tries to put too much gas into the system, the pressure $\left(\mathrm{P}_{2}\right)$ will increase. The diaphragm, as a measuring element, responds to this increase in pressure and, as a loading element, produces a force which compresses the spring and thereby restricts the amount of gas going into the system. On the other hand, if the regulator doesn't put enough gas into the system, the pressure $\left(\mathrm{P}_{2}\right)$ falls and the diaphragm responds by producing less force. The spring will then overcome the reduced diaphragm force and open the valve to allow more gas into the system. This type of self-correcting action is known as negative feedback. This example illustrates that there are three essential elements needed to make any operating gas pressure regulator. They are a restricting element, a loading element, and a measuring element. Regardless of how sophisticated the system may become, it still must contain these three essential elements.

If the proportional band of a given direct-operated regulator is too great for a particular application, there are a number of things we can do. From our previous examples we recall that spring rate, valve travel, and effective diaphragm area were the three parameters that affect the proportional band. In the last section we pointed out the way to change these parameters in order to improve the proportional band. If these changes are either inadequate or impractical, the next logical step is to install a pressure amplifier in the measuring or sensing line. This pressure amplifier is frequently referred to as a pilot.

Conclusion

It should be obvious at this point that there are fundamentals to understand in order to properly select and apply a gas regulator to do a specific job. Although these fundamentals are profuse in number and have a sound theoretical base, they are relatively straightforward and easy to understand.

As you are probably aware by now, we made a number of simplifying assumptions as we progressed. This was done in the interest of gaining a clearer understanding of these fundamentals without getting bogged down in special details and exceptions. By no means has the complete story of gas pressure regulation been told. The subject of gas pressure regulation is much broader in scope than can be presented in a single document such as this, but it is sincerely hoped that this application guide will help to gain a working knowledge of some fundamentals that will enable one to do a better job of designing, selecting, applying, evaluating, or troubleshooting any gas pressure regulation equipment.

Figure 5

Pilot-Operated Regulators

So far we have only discussed direct-operated regulators.
This is the name given to that class of regulators where the measured pressure is applied directly to the loading element with no intermediate hardware. There are really only two basic configurations of direct-operated regulators that are practical. These two basic types are illustrated in Figures 4 and 5.

Regulator Components

Straight Stem Style Direct-Operated Regulator Components

NOTE:
THE INFORMATION PRESENTED IS FOR REFERENCE ONLY. FOR MORE SPECIFIC APPLICATION INFORMATION, PLEASE LOG ON TO: www.emersonprocess.com/regulators

Technical

Regulator Components

Lever Style Direct-Operated Regulator Components

Type 627

NOTE:
THE INFORMATION PRESENTED IS FOR REFERENCE ONLY. FOR MORE SPECIFIC APPLICATION INFORMATION, PLEASE LOG ON TO: www.emersonprocess.com/regulators

Regulator Components

Loading Style (Two-Path Control) Pilot-Operated Regulator Components

Type 1098-EGR

NOTE:
THE INFORMATION PRESENTED IS FOR REFERENCE ONLY. FOR MORE SPECIFIC APPLICATION INFORMATION, PLEASE LOG ON TO: www.emersonprocess.com/regulators

TECHNICAL

Regulator Components

Unloading Style Pilot-Operated Regulator Components

NOTE:
THE INFORMATION PRESENTED IS FOR REFERENCE ONLY. FOR MORE SPECIFIC APPLICATION INFORMATION, PLEASE LOG ON TO: www.emersonprocess.com/regulators

Introduction to Regulators

Instrument engineers agree that the simpler a system is the better it is, as long as it provides adequate control. In general, regulators are simpler devices than control valves. Regulators are self-contained, direct-operated control devices which use energy from the controlled system to operate whereas control valves require external power sources, transmitting instruments, and control instruments.

Specific Regulator Types

Within the broad categories of direct-operated and pilotoperated regulators fall virtually all of the general regulator designs, including:

- Pressure reducing regulators
- Backpressure regulators
- Pressure relief valves
- Pressure switching valves
- Vacuum regulators and breakers

Pressure Reducing Regulators

A pressure reducing regulator maintains a desired reduced outlet pressure while providing the required fluid flow to satisfy a downstream demand. The pressure which the regulator maintains is the outlet pressure setting (setpoint) of the regulator.

Types of Pressure Reducing Regulators

This section describes the various types of regulators. All regulators fit into one of the following two categories:

1. Direct-Operated (also sometimes called Self-Operated)
2. Pilot-Operated

Figure 1. Type 627 Direct-Operated Regulator and Operational Schematic

Direct-Operated (Self-Operated) Regulators

Direct-operated regulators are the simplest style of regulators. At low set pressures, typically below $1 \mathrm{psig}(0,07 \mathrm{bar})$, they can have very accurate ($\pm 1 \%$) control. At high control pressures, up to 500 psig (34,5 bar), 10 to 20% control is typical.

In operation, a direct-operated, pressure reducing regulator senses the downstream pressure through either internal pressure registration or an external control line. This downstream pressure opposes a spring which moves the diaphragm and valve plug to change the size of the flow path through the regulator.

Pilot-Operated Regulators

Pilot-operated regulators are preferred for high flow rates or where precise pressure control is required. A popular type of pilotoperated system uses two-path control. In two-path control, the main valve diaphragm responds quickly to downstream pressure

Figure 2. Type 1098-EGR Pilot-Operated Regulator and Operational Schematic

TECHNICAL

Introduction to Regulators

changes, causing an immediate correction in the main valve plug position. At the same time, the pilot diaphragm diverts some of the reduced inlet pressure to the other side of the main valve diaphragm to control the final positioning of the main valve plug. Two-path control results in fast response and accurate control.

Backpressure Regulators and Pressure Relief Valves

A backpressure regulator maintains a desired upstream pressure by varying the flow in response to changes in upstream pressure. A pressure relief valve limits pressure build-up (prevents overpressure) at its location in a pressure system. The relief valve opens to prevent a rise of internal pressure in excess of a specified value. The pressure at which the relief valve begins to open pressure is the relief pressure setting.

Relief valves and backpressure regulators are the same devices. The name is determined by the application. Fisher ${ }^{\circledR}$ relief valves are not ASME safety relief valves.

Figure 3. Type 63EG Backpressure Regulator/Relief Valve Operational Schematic

Pressure Switching Valves

Pressure switching valves are used in pneumatic logic systems. These valves are for either two-way or three-way switching. Two-way switching valves are used for on/off service in pneumatic systems.

Three-way switching valves direct inlet pressure from one outlet port to another whenever the sensed pressure exceeds or drops below a preset limit.

Figure 4. Type Y690VB Vacuum Breaker and Type V695VR Vacuum Regulator Operational Schematics

Vacuum Regulators and Breakers

Vacuum regulators and vacuum breakers are devices used to control vacuum. A vacuum regulator maintains a constant vacuum at the regulator inlet with a higher vacuum connected to the outlet. During operation, a vacuum regulator remains closed until a vacuum decrease (a rise in absolute pressure) exceeds the spring setting and opens the valve disk. A vacuum breaker prevents a vacuum from exceeding a specified value. During operation, a vacuum breaker remains closed until an increase in vacuum (a decrease in absolute pressure) exceeds the spring setting and opens the valve disk.

Regulator Selection Criteria

This section describes the procedure normally used to select regulators for various applications. For most applications, there is generally a wide choice of regulators that will accomplish the

Introduction to Regulators

required function. The vendor and the customer, working together, have the task of deciding which of the available regulators is best suited for the job at hand. The selection procedure is essentially a process of elimination wherein the answers to a series of questions narrow the choice down to a specific regulator.

Control Application

To begin the selection procedure, it's necessary to define what the regulator is going to do. In other words, what is the control application? The answer to this question will determine the general type of regulator required, such as:

- Pressure reducing regulators
- Backpressure regulators
- Pressure relief valves
- Vacuum regulators
- Vacuum breaker

The selection criteria used in selecting each of these general regulator types is described in greater detail in the following subsections.

Pressure Reducing Regulator Selection

The majority of applications require a pressure reducing regulator. Assuming the application calls for a pressure reducing regulator, the following parameters must be determined:

- Outlet pressure to be controlled
- Inlet pressure to the regulator
- Capacity required
- Shutoff capability required
- Process fluid
- Process fluid temperature
- Accuracy required
- Pipe size required
- End connection style
- Material requirements
- Control line needed
- Overpressure protection

Outlet Pressure to be Controlled

For a pressure reducing regulator, the first parameter to determine is the required outlet pressure. When the outlet pressure is known, it helps determine:

- Spring requirements
- Casing pressure rating
- Body outlet rating
- Orifice rating and size
- Regulator size

Inlet Pressure of the Regulator

The next parameter is the inlet pressure. The inlet pressure (minimum and maximum) determines the:

- Pressure rating for the body inlet
- Orifice pressure rating and size
- Main spring (in a pilot-operated regulator)
- Regulator size

If the inlet pressure varies significantly, it can have an effect on:

- Accuracy of the controlled pressure
- Capacity of the regulator
- Regulator style (two-stage or unloading)

Capacity Required

The required flow capacity influences the following decisions:

- Size of the regulator
- Orifice size
- Style of regulator (direct-operated or pilot-operated)

Shutoff Capability

The required shutoff capability determines the type of disk material:

- Standard disk materials are Nitrile (NBR) and Neoprene (CR), these materials provide the tightest shutoff.
- Other materials, such as Nylon (PA), Polytetrafluoroethylene (PTFE), Fluoroelastomer (FKM), and Ethylenepropylene (EPDM), are used when standard material cannot be used.
- Metal disks are used in high temperatures and when elastomers are not compatible with the process fluid; however, tight shutoff is typically not achieved.

Process Fluid

Each process fluid has its own set of unique characteristics in terms of its chemical composition, corrosive properties, impurities, flammability, hazardous nature, toxic effect, explosive limits, and molecular structure. In some cases special care must be taken to select the proper materials that will come in contact with the process fluid.

Process Fluid Temperature

Fluid temperature might determine the materials used in the regulator. Standard regulators use Steel and Nitrile (NBR) or Neoprene (CR) elastomers that are good for a temperature range of -40° to $180^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.82^{\circ} \mathrm{C}\right)$. Temperatures above and below this range may require other materials, such as Stainless steel, Ethylenepropylene (EPDM), or Perfluoroelastomer (FFKM).

TECHNICAL

Introduction to Regulators

Accuracy Required

The accuracy requirement of the process determines the acceptable droop (also called proportional band or offset). Regulators fall into the following groups as far as droop is concerned:

- Rough-cut Group- This group generally includes many first-stage, rough-cut direct-operated regulators. This group usually has the highest amount of droop. However, some designs are very accurate, especially the low-pressure gas or air types, such as house service regulators, which incorporate a relatively large diaphragm casing.
- Close-control Group- This group usually includes pilotoperated regulators. They provide high accuracy over a large range of flows. Applications that require close control include these examples:
- Burner control where the fuel/air ratio is critical to burner efficiency and the gas pressure has a significant effect on the fuel/air ratio.
- Metering devices, such as gas meters, which require constant input pressures to ensure accurate measurement.

Pipe Size Required

If the pipe size is known, it gives the specifier of a new regulator a more defined starting point. If, after making an initial selection of a regulator, the regulator is larger than the pipe size, it usually means that an error has been made either in selecting the pipe size or the regulator, or in determining the original parameters (such as pressure or flow) required for regulator selection. In many cases, the outlet piping needs to be larger than the regulator for the regulator to reach full capacity.

End Connection Style

In general, the following end connections are available for the indicated regulator sizes:

- Pipe threads or socket weld: 2-inch (DN 50) and smaller
- Flanged: 1-inch (DN 25) and larger
- Butt weld: 1-inch (DN 25) and larger

Note: Not all end connections are available for all regulators.

Required Materials

The regulator construction materials are generally dictated by the application. Standard materials are:

- Aluminum
- Cast iron or Ductile iron
- Steel
- Bronze and Brass
- Stainless steel

Special materials required by the process can have an effect on the type of regulator that can be used. Oxygen service, for example, requires special materials, requires special cleaning preparation, and requires that no oil or grease be in the regulator.

Control Lines

For pressure registration, control lines are connected downstream of a pressure reducing regulator, and upstream of a backpressure regulator. Typically large direct-operated regulators have external control lines, and small direct-operated regulators have internal registration instead of a control line. Most pilot-operated regulators have external control lines, but this should be confirmed for each regulator type considered.

Stroking Speed

Stroking speed is often an important selection criteria. Directoperated regulators are very fast, and pilot-operated regulators are slightly slower. Both types are faster than most control valves. When speed is critical, techniques can be used to decrease stroking time.

Overpressure Protection

The need for overpressure protection should always be considered. Overpressure protection is generally provided by an external relief valve, or in some regulators, by an internal relief valve. Internal relief is an option that you must choose at the time of purchase. The capacity of internal relief is usually limited in comparison with a separate relief valve. Other methods such as shutoff valves or monitor regulators can also be used.

Regulator Replacement

When a regulator is being selected to replace an existing regulator, the existing regulator can provide the following information:

- Style of regulator
- Size of regulator
- Type number of the regulator
- Special requirements for the regulator, such as downstream pressure sensing through a control line versus internal pressure registration.

TECHNICAL

Introduction to Regulators

Regulator Price

The price of a regulator is only a part of the cost of ownership. Additional costs include installation and maintenance. In selecting a regulator, you should consider all of the costs that will accrue over the life of the regulator. The regulator with a low initial cost might not be the most economical in the long run. For example, a directoperated regulator is generally less expensive, but a pilot-operated regulator might provide more capacity for the initial investment. To illustrate, a 2-inch (DN 50) pilot-operated regulator can have the same capacity and a lower price than a 3-inch (DN 80), directoperated regulator.

Backpressure Regulator Selection

Backpressure regulators control the inlet pressure rather than the outlet pressure. The selection criteria for a backpressure regulator the same as for a pressure reducing regulator.

Relief Valve Selection

An external relief valve is a form of backpressure regulator. A relief valve opens when the inlet pressure exceeds a set value. Relief is generally to atmosphere. The selection criteria is the same as for a pressure reducing regulator.

RELIEF PRESSURE CONTROL AT RELIEF VALVE INLET

30B8288_A

BACKPRESSURE CONTROL

Figure 5. Backpressure Regulator/Relief Valve Applications

Principles of Direct-Operated Regulators

Introduction

Pressure regulators have become very familiar items over the years, and nearly everyone has grown accustomed to seeing them in factories, public buildings, by the roadside, and even on the outside of their own homes. As is frequently the case with such familiar items, we have a tendency to take them for granted. It's only when a problem develops, or when we are selecting a regulator for a new application, that we need to look more deeply into the fundamentals of the regulator's operation.

Regulators provide a means of controlling the flow of a gas or other fluid supply to downstream processes or customers. An ideal regulator would supply downstream demand while keeping downstream pressure constant; however, the mechanics of directoperated regulator construction are such that there will always be some deviation (droop or offset) in downstream pressure.

Figure 1. Direct-Operated Regulators

Regulator Basics

A pressure reducing regulator must satisfy a downstream demand while maintaining the system pressure within certain acceptable limits. When the flow rate is low, the regulator plug or disk approaches its seat and restricts the flow. When demand increases, the plug or disk moves away from its seat, creating a larger opening and increased flow. Ideally, a regulator should provide a constant downstream pressure while delivering the required flow.

The service regulator mounted on the meter outside virtually every home serves as an example. As appliances such as a furnace or stove call for the flow of more gas, the service regulator responds by delivering the required flow. As this happens, the pressure should be held constant. This is important because the gas meter, which is the cash register of the system, is often calibrated for a given pressure.

Direct-operated regulators have many commercial and residential uses. Typical applications include industrial, commercial, and domestic gas service, instrument air supply, and a broad range of applications in industrial processes.

Regulators automatically adjust flow to meet downstream demand. Before regulators were invented, someone had to watch a pressure gauge for pressure drops which signaled an increase in downstream demand. When the downstream pressure decreased, more flow was required. The operator then opened the regulating valve until the gauge pressure increased, showing that downstream demand was being met.

Essential Elements

Direct-operated regulators have three essential elements:

- A restricting element - a valve, disk, or plug
- A measuring element- generally a diaphragm
- A loading element - generally a spring

Figure 2. Three Essential Elements

Principles of Direct-Operated Regulators

Restricting Element

The regulator's restricting element is generally a disk or plug that can be positioned fully open, fully closed, or somewhere in between to control the amount of flow. When fully closed, the disk or plug seats tightly against the valve orifice or seat ring to shutoff flow.

Measuring Element

The measuring element is usually a flexible diaphragm that senses downstream pressure $\left(\mathrm{P}_{2}\right)$. The diaphragm moves as pressure beneath it changes. The restricting element is often attached to the diaphragm with a stem so that when the diaphragm moves, so does the restricting element.

Loading Element

A weight or spring acts as the loading element. The loading element counterbalances downstream pressure $\left(\mathrm{P}_{2}\right)$. The amount of unbalance between the loading element and the measuring element determines the position of the restricting element. Therefore, we can adjust the desired amount of flow through the regulator, or setpoint, by varying the load. Some of the first direct-operated regulators used weights as loading elements. Most modern regulators use springs.

Regulator Operation

To examine how the regulator works, let's consider these values for a direct-operated regulator installation:

- Upstream Pressure $\left(\mathrm{P}_{1}\right)=100 \mathrm{psig}$
- Downstream Pressure $\left(\mathrm{P}_{2}\right)=10 \mathrm{psig}$
- Pressure Drop Across the Regulator $(\mathrm{P})=90 \mathrm{psi}$
- Diaphragm Area $\left(\mathrm{A}_{\mathrm{D}}\right)=10$ square inches
- Loading Weight $=100$ pounds

Let's examine a regulator in equilibrium as shown in Figure 3. The pressure acting against the diaphragm creates a force acting up to 100 pounds.

$$
\begin{aligned}
& \text { Diaphragm Force }\left(F_{D}\right)=\text { Pressure }\left(P_{2}\right) \times \text { Area of Diaphragm }\left(A_{D}\right) \\
& \text { or } \\
& F_{D}=10 \text { psig } \times 10 \text { square inches }=100 \text { pounds }
\end{aligned}
$$

The 100 pounds weight acts down with a force of 100 pounds, so all the opposing forces are equal, and the regulator plug remains stationary.

Increasing Demand

If the downstream demand increases, P_{2} will drop. The pressure on the diaphragm drops, allowing the regulator to open further. Suppose in our example P_{2} drops to 9 psig. The force acting up then equals

Figure 3. Elements

90 pounds ($9 \mathrm{psig} \times 10$ square inches $=90$ pounds). Because of the unbalance of the measuring element and the loading element, the restricting element will move to allow passage of more flow.

Decreasing Demand

If the downstream demand for flow decreases, downstream pressure increases. In our example, suppose P_{2} increases to 11 psig. The force acting up against the weight becomes 110 pounds ($11 \mathrm{psig} \times 10$ square inches $=110$ pounds). In this case, unbalance causes the restricting element to move up to pass less flow or lockup.

Weights versus Springs

One of the problems with weight-loaded systems is that they are slow to respond. So if downstream pressure changes rapidly, our weight-loaded regulator may not be able to keep up. Always behind, it may become unstable and cycle - continuously going from the fully open to the fully closed position. There are other problems. Because the amount of weight controls regulator setpoint, the regulator is not easy to adjust. The weight will always have to be on top of the diaphragm. So, let's consider using a spring. By using a spring instead of a weight, regulator stability increases because a spring has less stiffness.

Principles of Direct-Operated Regulators

SPRING AS ELEMENT

Figure 4. Spring as Element

Spring Rate

We choose a spring for a regulator by its spring rate (K). K represents the amount of force necessary to compress the spring one inch. For example, a spring with a rate of 100 pounds per inch needs 100 pounds of force to compress it one inch, 200 pounds of force to compress it two inches, and so on.

Equilibrium with a Spring

Instead of a weight, let's substitute a spring with a rate of 100 pounds per inch. And, with the regulator's spring adjustor, we'll wind in one inch of compression to provide a spring force $\left(\mathrm{F}_{\mathrm{S}}\right)$ of 100 pounds. This amount of compression of the regulator spring determines setpoint, or the downstream pressure that we want to hold constant. By adjusting the initial spring compression, we change the spring loading force, so P_{2} will be at a different value in order to balance the spring force.

Now the spring acts down with a force of 100 pounds, and the downstream pressure acts up against the diaphragm producing a force of 100 pounds $\left(\mathrm{F}_{\mathrm{D}}=\mathrm{P}_{2} \times \mathrm{A}_{\mathrm{D}}\right)$. Under these conditions the regulator has achieved equilibrium; that is, the plug or disk is holding a fixed position.

Spring as Loading Element

By using a spring instead of a fixed weight, we gain better control and stability in the regulator. The regulator will now be less likely to go fully open or fully closed for any change in downstream pressure $\left(\mathrm{P}_{2}\right)$. In effect, the spring acts like a multitude of different weights.

Throttling Example

Assume we still want to maintain 10 psig downstream. Consider what happens now when downstream demand increases and pressure P_{2} drops to 9 psig. The diaphragm force $\left(F_{D}\right)$ acting up is now 90 pounds.

$$
\begin{aligned}
& F_{D}=P_{2} \times A_{D} \\
& F_{D}=9 \text { psig } \times 10 \mathrm{in}^{2} \\
& \mathbf{F}_{D}=90 \text { pounds }
\end{aligned}
$$

We can also determine how much the spring will move (extend) which will also tell us how much the disk will travel. To keep the regulator in equilibrium, the spring must produce a force $\left(\mathrm{F}_{\mathrm{S}}\right)$ equal to the force of the diaphragm. The formula for determining spring force $\left(\mathrm{F}_{\mathrm{S}}\right)$ is:

$$
\mathbf{F}_{\mathbf{S}}=(\mathbf{K})(\mathbf{X})
$$

where $\mathrm{K}=$ spring rate in pounds/inch and $\mathrm{X}=$ travel or compression in inches.

Figure 5. Plug Travel

Principles of Direct-Operated Regulators

AS THE FLOW RATE APPROACHES ZERO, P_{2} INCREASES STEEPLY. LOCKUP IS THE TERM APPLIED TO THE VALUE OF P_{2} AT ZERO FLOW.

Figure 6. Typical Performance Curve

We know F_{S} is 90 pounds and K is 100 pounds/inch, so we can solve for X with:

$$
\begin{aligned}
& X=F_{S} \div K \\
& X=\mathbf{9 0} \text { pounds } \div \mathbf{1 0 0} \text { pounds/inch } \\
& X=\mathbf{0 . 9} \text { inch }
\end{aligned}
$$

The spring, and therefore the disk, has moved down $1 / 10$-inch, allowing more flow to pass through the regulator body.

Regulator Operation and P_{2}

Now we see the irony in this regulator design. We recall that the purpose of an ideal regulator is to match downstream demand while keeping P_{2} constant. But for this regulator design to increase flow, there must be a change in P_{2}.

Regulator Performance

We can check the performance of any regulating system by examining its characteristics. Most of these characteristics can be best described using pressure versus flow curves as shown in Figure 6.

Performance Criteria

We can plot the performance of an ideal regulator such that no matter how the demand changes, our regulator will match that demand (within its capacity limits) with no change in the downstream pressure $\left(\mathrm{P}_{2}\right)$. This straight line performance becomes the standard against which we can measure the performance of a real regulator.

Setpoint

The constant pressure desired is represented by the setpoint. But no regulator is ideal. The downward sloping line on the diagram represents pressure $\left(\mathrm{P}_{2}\right)$ plotted as a function of flow for an actual direct-operated regulator. The setpoint is determined by the initial compression of the regulator spring. By adjusting the initial spring compression you change the spring loading force, so P_{2} will be at a different value in order to balance the spring force. This establishes setpoint.

Droop

Droop, proportional band, and offset are terms used to describe the phenomenon of P_{2} dropping below setpoint as flow increases. Droop is the amount of deviation from setpoint at a given flow, expressed as a percentage of setpoint. This "droop" curve is important to a user because it indicates regulating (useful) capacity.

Capacity

Capacities published by regulator manufacturers are given for different amounts of droop. Let's see why this is important.

Let's say that for our original problem, with the regulator set at 10 psig , our process requires 200 SCFH (standard cubic feet per hour) with no more than a 1 psi drop in setpoint. We need to keep the pressure at or above 9 psig because we have a low limit safety switch set at 9 psig that will shut the system down if pressure falls below this point.

Figure 6 illustrates the performance of a regulator that can do the job. And, if we can allow the downstream pressure to drop below 9 psig, the regulator can allow even more flow.

The capacities of a regulator published by manufacturers are generally given for 10% droop and 20% droop. In our example, this would relate to flow at 9 psig and at 8 psig.

Accuracy

The accuracy of a regulator is determined by the amount of flow it can pass for a given amount of droop. The closer the regulator is to the ideal regulator curve (setpoint), the more accurate it is.

Lockup

Lockup is the pressure above setpoint that is required to shut the regulator off tight. In many regulators, the orifice has a knife edge while the disk is a soft material. Some extra pressure, P_{2}, is

TECHNICAL

Principles of Direct-Operated Regulators

required to force the soft disk into the knife edge to make a tight seal. The amount of extra pressure required is lockup pressure. Lockup pressure may be important for a number of reasons. Consider the example above where a low pressure limit switch would shut down the system if P_{2} fell below 9 psig. Now consider the same system with a high pressure safety cut out switch set a 10.5 psig. Because our regulator has a lockup pressure of 11 psig , the high limit switch will shut the system down before the regulator can establish tight shutoff. Obviously, we'll want to select a regulator with a lower lockup pressure.

Spring Rate and Regulator Accuracy

Using our initial problem as an example, let's say we now need the regulator to flow 300 SCFH at a droop of 10% from our original setpoint of 10 psig . Ten percent of $10 \mathrm{psig}=1 \mathrm{psig}$, so P_{2} cannot drop below 10 to 1 , or 9 psi. Our present regulator would not be accurate enough. For our regulator to pass $300 \mathrm{SCFH}, \mathrm{P}_{2}$ will have to drop to 8 psig, or 20% droop.

Spring Rate and Droop

One way to make our regulator more accurate is to change to a lighter spring rate. To see how spring rate affects regulator accuracy, let's return to our original example. We first tried a spring with a rate of 100 pounds $/$ inch. Let's substitute one with a rate of 50 pounds/inch. To keep the regulator in equilibrium, we'll have to initially adjust the spring to balance the 100 pound force produced by P_{2} acting on the diaphragm. Recall how we calculate spring force:

$$
\mathbf{F}_{\mathrm{S}}=\mathrm{K} \text { (spring rate) } \times \mathbf{X} \text { (compression) }
$$

Knowing that F_{S} must equal 100 pounds and $\mathrm{K}=50$ pounds/inch, we can solve for X , or spring compression, with:

$$
\mathbf{X}=\mathbf{F}_{\mathrm{S}} \div \mathbf{K} \text {, or } \mathbf{X}=\mathbf{2} \text { inches }
$$

So, we must wind in 2 -inches of initial spring compression to balance diaphragm force, F_{D}.

Effect on Plug Travel

We saw before that with a spring rate of 100 pounds/inch, when P_{2} dropped from 10 to 9 psig, the spring relaxed (and the valve disk traveled) 0.1 inch. Now let's solve for the amount of disk travel with the lighter spring rate of 50 pounds per inch. The force produced by the diaphragm is still 90 pounds.

To maintain equilibrium, the spring must also produce a force of 90 pounds. Recall the formula that determines spring force:

$$
F_{S}=(K)(X)
$$

Because we know FS must equal 90 pounds and our spring rate (K) is 50 pounds/inch, we can solve for compression (X) with:

$$
\begin{aligned}
& X=F_{S} \div K \\
& X=\mathbf{9 0} \text { pounds } \div \mathbf{5 0} \text { pounds/inch } \\
& X=\mathbf{1 . 8} \text { inches }
\end{aligned}
$$

To establish setpoint, we originally compressed this spring 2 inches. Now it has relaxed so that it is only compressed 1.8 inches, a change of 0.2 -inch. So with a spring rate of 50 pounds/inch, the regulator responded to a 1 psig drop in P_{2} by opening twice as far as it did with a spring rate of 100 pounds/inch. Therefore, our regulator is now more accurate because it has greater capacity for the same change in P_{2}. In other words, it has less droop or offset. Using this example, it is easy to see how capacity and accuracy are related and how they are related to spring rate.

Light Spring Rate

Experience has shown that choosing the lightest available spring rate will provide the most accuracy (least droop). For example, a spring with a range of 35 to 100 psig is more accurate than a spring with a range of 90 to 200 psig . If you want to set your regulator at 100 psig , the 35 to 100 psig spring will provide better accuracy.

Practical Limits

While a lighter spring can reduce droop and improve accuracy, using too light a spring can cause instability problems. Fortunately, most of the work in spring selection is done by regulator manufacturers. They determine spring rates that will provide good performance for a given regulator, and publish these rates along with other sizing information.

Diaphragm Area and Regulator Accuracy

Diaphragm Area

Until this point, we have assumed the diaphragm area to be constant. In practice, the diaphragm area changes with travel. We're interested in this changing area because it has a major influence on accuracy and droop.

Diaphragms have convolutions in them so that they are flexible enough to move over a rated travel range. As they change position,

Principles of Direct-Operated Regulators

Figure 7. Changing Diaphragm Area

Figure 8. Critical Flow
they also change shape because of the pressure applied to them. Consider the example shown in Figure 7. As downstream pressure $\left(\mathrm{P}_{2}\right)$ drops, the diaphragm moves down. As it moves down, it changes shape and diaphragm area increases because the centers of the convolutions become further apart. The larger diaphragm area magnifies the effect of P_{2} so even less P_{2} is required to hold the diaphragm in place. This is called diaphragm effect. The result is decreased accuracy because incremental changes in P_{2} do not result in corresponding changes in spring compression or disk position.

Increasing Diaphragm Area

To better understand the effects of changing diaphragm area, let's calculate the forces in the exaggerated example given in Figure 7. First, assume that the regulator is in equilibrium with a downstream pressure P_{2} of 10 psig . Also assume that the area of the diaphragm in this position is 10 square inches. The diaphragm force $\left(\mathrm{F}_{\mathrm{D}}\right)$ is:

$$
\begin{aligned}
& F_{D}=\left(P_{2}\right)\left(A_{D}\right) \\
& F_{D}=(10 \text { psi })(10 \text { square inches }) \\
& F_{D}=100 \text { pounds }
\end{aligned}
$$

Now assume that downstream pressure drops to 9 psig signaling the need for increased flow. As the diaphragm moves, its area increases to 11 square inches. The diaphragm force now produced is:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{D}}=(9 \mathrm{psi})(11 \text { square inches }) \\
& \mathrm{F}_{\mathrm{D}}=99 \text { pounds }
\end{aligned}
$$

The change in diaphragm area increases the regulator's droop. While it's important to note that diaphragm effect contributes to
droop, diaphragm sizes are generally determined by manufacturers for different regulator types, so there is rarely a user option.

Diaphragm Size and Sensitivity

Also of interest is the fact that increasing diaphragm size can result in increased sensitivity. A larger diaphragm area will produce more force for a given change in P_{2}. Therefore, larger diaphragms are often used when measuring small changes in low-pressure applications. Service regulators used in domestic gas service are an example.

Restricting Element and Regulator Performance

Critical Flow

Although changing the orifice size can increase capacity, a regulator can pass only so much flow for a given orifice size and inlet pressure, no matter how much we improve the unit's accuracy. Shown in Figure 8, after the regulator is wide-open, reducing P_{2} does not result in higher flow. This area of the flow curve identifies critical flow. To increase the amount of flow through the regulator, the flowing fluid must pass at higher and higher velocities. But, the fluid can only go so fast. Holding P_{1} constant while decreasing P_{2}, flow approaches a maximum which is the speed of sound in that particular gas, or its sonic velocity. Sonic velocity depends on the inlet pressure and temperature for the flowing fluid. Critical flow is generally anticipated when downstream pressure $\left(\mathrm{P}_{2}\right)$ approaches a value that is less than or equal to one-half of inlet pressure $\left(\mathrm{P}_{1}\right)$.

Principles of Direct-Operated Regulators

Orifice Size and Capacity

One way to increase capacity is to increase the size of the orifice. The variable flow area between disk and orifice depends directly on orifice diameter. Therefore, the disk will not have to travel as far with a larger orifice to establish the required regulator flow rate, and droop is reduced. Sonic velocity is still a limiting factor, but the flow rate at sonic velocity is greater because more gas is passing through the larger orifice.

Stated another way, a given change in P_{2} will produce a larger change in flow rate with a larger orifice than it would with a smaller orifice. However, there are definite limits to the size of orifice that can be used. Too large an orifice makes the regulator more sensitive to fluctuating inlet pressures. If the regulator is overly sensitive, it will have a tendency to become unstable and cycle.

Orifice Size and Stability

One condition that results from an oversized orifice is known as the "bathtub stopper" effect. As the disk gets very close to the orifice, the forces of fluid flow tend to slam the disk into the orifice and shutoff flow. Downstream pressure drops and the disk opens. This causes the regulator to cycle-open, closed, open, closed. By selecting a smaller orifice, the disk will operate farther away from the orifice so the regulator will be more stable.

Orifice Size, Lockup, and Wear

A larger orifice size also requires a higher shutoff pressure, or lockup pressure. In addition, an oversized orifice usually produces faster wear on the valve disk and orifice because it controls flow with the disk near the seat. This wear is accelerated with high flow rates and when there is dirt or other erosive material in the flow stream.

Orifice Guideline

Experience indicates that using the smallest possible orifice is generally the best rule-of-thumb for proper control and stability.

Increasing $\mathbf{P}_{\mathbf{1}}$

Regulator capacity can be increased by increasing inlet pressure $\left(\mathrm{P}_{1}\right)$.

Factors Affecting Regulator Accuracy

As we have seen, the design elements of a regulator-the spring, diaphragm, and orifice size-can affect its accuracy. Some of these inherent limits can be overcome with changes to the regulator design.

Figure 9. Increased Sensitivity

Performance Limits

The three curves in Figure 9 summarize the effects of spring rate, diaphragm area, and orifice size on the shape of the controlled pressure-flow rate curve. Curve A is a reference curve representing a typical regulator. Curve B represents the improved performance from either increasing diaphragm area or decreasing spring rate.
Curve C represents the effect of increasing orifice size. Note that increased orifice size also offers higher flow capabilities. But remember that too large an orifice size can produce problems that will negate any gains in capacity.

Figure 10. Cycling

Cycling

The sine wave in Figure 10 might be what we see if we increase regulator sensitivity beyond certain limits. The sine wave indicates instability and cycling.

Design Variations

All direct-operated regulators have performance limits that result from droop. Some regulators are available with features designed to overcome or minimize these limits.

Principles of Direct-Operated Regulators

Figure 11. Pitot Tube

Improving Regulator Accuracy with a Pitot Tube

In addition to the changes we can make to diaphragm area, spring rate, orifice size, and inlet pressure, we can also improve regulator accuracy by adding a pitot tube as shown in Figure 11. Internal to the regulator, the pitot tube connects the diaphragm casing with a low-pressure, high velocity region within the regulator body. The pressure at this area will be lower than P_{2} further downstream. By using a pitot tube to measure the lower pressure, the regulator will make more dramatic changes in response to any change in P_{2}. In other words, the pitot tube tricks the regulator, causing it to respond more than it would otherwise.

Figure 12. Performance with Pitot Tube

Numerical Example

For example, we'll establish setpoint by placing a gauge downstream and adjusting spring compression until the gauge reads 10 psig for P_{2}. Because of the pitot tube, the regulator might actually be sensing a lower pressure. When P_{2} drops from 10 psig to 9 psig , the pressure sensed by the pitot tube may drop from 8 psig to 6 psig . Therefore, the regulator opens further than it would if it were sensing actual downstream pressure.

Decreased Droop (Boost)

The pitot tube offers one chief advantage for regulator accuracy, it decreases droop. Shown in Figure 12, the diaphragm pressure, P_{D}, must drop just as low with a pitot tube as without to move the disk far enough to supply the required flow. But the solid curve shows that P_{2} does not decrease as much as it did without a pitot tube. In fact, P_{2} may increase. This is called boost instead of droop. So the use of a pitot tube, or similar device, can dramatically improve droop characteristics of a regulator.

Figure 13. Lever Style Regulator

Improving Performance with a Lever

The lever style regulator is a variation of the simple direct-operated regulator. It operates in the same manner, except that it uses a lever to gain mechanical advantage and provide a high shutoff force.

In earlier discussions, we noted that the use of a larger diaphragm can result in increased sensitivity. This is because any change in P_{2} will result in a larger change in diaphragm force. The same result is obtained by using a lever to multiply the force produced by the diaphragm as shown in Figure 13.

The main advantage of lever designs is that they provide increased force for lockup without the extra cost, size, and weight associated with larger diaphragms, diaphragm casings, and associated parts.

Principles of Pilot-Operated Regulators

Pilot-Operated Regulator Basics

In the evolution of pressure regulator designs, the shortcomings of the direct-operated regulator naturally led to attempts to improve accuracy and capacity. A logical next step in regulator design is to use what we know about regulator operation to explore a method of increasing sensitivity that will improve all of the performance criteria discussed.

InLET PRESSURE, P_{1}
OUTLET PRESSURE, P_{2}
ATMOSPHERIC PRESSURE
LOADING PRESSURE, P_{L}

Figure 1. Pilot-Operated Regulator

Regulator Pilots

To improve the sensitivity of our regulator, we would like to be able to sense P_{2} and then somehow make a change in loading pressure (P_{L}) that is greater than the change in P_{2}. To accomplish this, we can use a device called a pilot, or pressure amplifier.

The major function of the pilot is to increase regulator sensitivity. If we can sense a change in P_{2} and translate it into a larger change in P_{L}, our regulator will be more responsive (sensitive) to changes in demand. In addition, we can significantly reduce droop so its effect on accuracy and capacity is minimized.

Gain

The amount of amplification supplied by the pilot is called "gain". To illustrate, a pilot with a gain of 20 will multiply the effect of a 1 psi change on the main diaphragm by 20 . For example, a decrease in P_{2} opens the pilot to increase $P_{L} 20$ times as much.

Identifying Pilots

Analysis of pilot-operated regulators can be simplified by viewing them as two independent regulators connected together. The smaller of the two is generally the pilot.

Setpoint

We may think of the pilot as the "brains" of the system. Setpoint and many performance variables are determined by the pilot. It senses P_{2} directly and will continue to make changes in P_{L} on the main regulator until the system is in equilibrium. The main regulator is the "muscle" of the system, and may be used to control large flows and pressures.

Spring Action

Notice that the pilot uses a spring-open action as found in directoperated regulators. The main regulator, shown in Figure 1, uses a spring-close action. The spring, rather than loading pressure, is used to achieve shutoff. Increasing P_{L} from the pilot onto the main diaphragm opens the main regulator.

Pilot Advantage

Because the pilot is the controlling device, many of the performance criteria we have discussed apply to the pilot. For example, droop is determined mainly by the pilot. By using very small pilot orifices and light springs, droop can be made small. Because of reduced droop, we will have greater usable capacity. Pilot lockup determines the lockup characteristics for the system. The main regulator spring provides tight shutoff whenever the pilot is locked up.

Gain and Restrictions

Stability

Although increased gain (sensitivity) is often considered an advantage, it also increases the gain of the entire pressure regulator system. If the system gain is too high, it may become unstable. In other words, the regulator might tend to oscillate; over-reacting by continuously opening and closing. Pilot gain can be modified to tune the regulator to the system. To provide a means for changing gain, every pilot-operated regulator system contains both a fixed and a variable restriction. The relative size of one restriction compared to the other can be varied to change gain and speed of response.

Principles of Pilot-Operated Regulators

Figure 2. Fixed Restrictions and Gain (Used on Two-Path Control Systems)

Restrictions, Response Time, and Gain

Consider the example shown in Figure 2 with a small fixed restriction. Decreasing P_{2} will result in pressure P_{L} increasing. Increasing P_{2} will result in a decrease in P_{L} while P_{L} bleeds out through the small fixed restriction.

If a larger fixed restriction is used with a variable restriction, the gain (sensitivity) is reduced. A larger decrease in P_{2} is required to increase P_{L} to the desired level because of the larger fixed restriction.

Figure 3. Unloading Systems

Loading and Unloading Designs

A loading pilot-operated design (Figure 2), also called two-path control, is so named because the action of the pilot loads P_{L} onto the main regulator measuring element. The variable restriction, or pilot orifice, opens to increase P_{L}.

An unloading pilot-operated design (Figure 3) is so named because the action of the pilot unloads P_{L} from the main regulator.

Figure 4. Two-Path Control

Two-Path Control (Loading Design)

In two-path control systems (Figure 4), the pilot is piped so that P_{2} is registered on the pilot diaphragm and on the main regulator diaphragm at the same time. When downstream demand is constant, P_{2} positions the pilot diaphragm so that flow through the pilot will keep P_{2} and P_{L} on the main regulator diaphragm. When P_{2} changes, the force on top of the main regulator diaphragm and on the bottom of the pilot diaphragm changes. As P_{2} acts on the main diaphragm, it begins repositioning the main valve plug. This immediate reaction to changes in P_{2} tends to make two-path designs faster than other pilot-operated regulators. Simultaneously, P_{2} acting on the pilot diaphragm repositions the pilot valve and

Principles of Pilot-Operated Regulators

INLET PRESSURE, P_{1}
OUTLET PRESSURE, P_{2} ATMOSPHERIC PRESSURE
LOADING PRESSURE, P_{L}

Figure 5. Unloading Control
changes P_{L} on the main regulator diaphragm. This adjustment to P_{L} accurately positions the main regulator valve plug. P_{L} on the main regulator diaphragm bleeds through a fixed restriction until the forces on both sides are in equilibrium. At that point, flow through the regulator valve matches the downstream demand.

Two-Path Control Advantages

The primary advantages of two-path control are speed and accuracy. These systems may limit droop to less than 1%. They are well suited to systems with requirements for high accuracy, large capacity, and a wide range of pressures.

Unloading Control

Unloading systems (Figure 5) locate the pilot so that P_{2} acts only on the pilot diaphragm. P_{1} constantly loads under the regulator diaphragm and has access to the top of the diaphragm through a fixed restriction.

When downstream demand is constant, the pilot valve is open enough that P_{L} holds the position of the main regulator diaphragm. When downstream demand changes, P_{2} changes and the pilot diaphragm reacts accordingly. The pilot valve adjusts P_{L} to reposition and hold the main regulator diaphragm.

Figure 6. Pilot-Operated Regulator Performance

Unloading Control Advantages

Unloading systems are not quite as fast as two-path systems, and they can require higher differential pressures to operate. However, they are simple and more economical, especially in large regulators. Unloading control is used with popular elastomer diaphragm style regulators. These regulators use a flexible membrane to throttle flow.

Performance Summary

Accuracy

Because of their high gain, pilot-operated regulators are extremely accurate. Droop for a direct-operated regulator might be in the range of 10 to 20% whereas pilot-operated regulators are between one and 3% with values under 1% possible.

Capacity

Pilot-operated designs provide high capacity for two reasons. First, we have shown that capacity is related to droop. And because droop can be made very small by using a pilot, capacity is increased. In addition, the pilot becomes the "brains" of the system and controls a larger, sometimes much larger, main regulator. This also allows increased flow capabilities.

Principles of Pilot-Operated Regulators

Figure 7. Type 1098-EGR, Typical Two-Path Control

Lockup

The lockup characteristics for a pilot-operated regulator are the lockup characteristics of the pilot. Therefore, with small orifices, lockup pressures can be small.

Applications

Pilot-operated regulators should be considered whenever accuracy, capacity, and/or high pressure are important selection criteria. They can often be applied to high capacity services with greater economy than a control valve and actuator with controller.

Two-Path Control

In some designs (Figure 7), the pilot and main regulator are separate components. In others (Figure 8), the system is integrated into a single package. All, however, follow the basic design concepts discussed earlier.

Figure 8. Type 99, Typical Two-Path Control with Integrally Mounted Pilot

Type 1098-EGR

The schematic in Figure 7 illustrates the Type 1098-EGR regulator's operation. It can be viewed as a model for all twopath, pilot-operated regulators. The pilot is simply a sensitive direct-operated regulator used to send loading pressure to the main regulator diaphragm.

Identify the inlet pressure $\left(\mathrm{P}_{1}\right)$. Find the downstream pressure $\left(\mathrm{P}_{2}\right)$. Follow it to where it opposes the loading pressure on the main regulator diaphragm. Then, trace P_{2} back to where it opposes the control spring in the pilot. Finally, locate the route of P_{2} between the pilot and the regulator diaphragm.

Changes in P_{2} register on the pilot and main regulator diaphragms at the same time. As P_{2} acts on the main diaphragm, it begins repositioning the main valve plug. Simultaneously, P_{2} acting on the pilot diaphragm repositions the pilot valve and changes P_{L} on the main regulator diaphragm. This adjustment in P_{L} accurately positions the main regulator valve plug.

Principles of Pilot-Operated Regulators

As downstream demand is met, P_{2} rises. Because P_{2} acts directly on both the pilot and main regulator diaphragms, this design provides fast response.

Type 99
The schematic in Figure 8 illustrates another typical two-path control design, the Type 99. The difference between the Type 1098-EGR and the Type 99 is the integrally mounted pilot of the Type 99.

The pilot diaphragm measures P_{2}. When P_{2} falls below the pilot setpoint, the diaphragm moves away from the pilot orifice and allows loading pressure to increase. This loads the top of the main regulator diaphragm and strokes the main regulator valve open further.

Unloading Design

Unloading designs incorporate a molded composition diaphragm that serves as the combined loading and restricting component of the main regulator. Full upstream pressure $\left(\mathrm{P}_{1}\right)$ is used to load the regulator diaphragm when it is seated. The regulator shown in Figure 9 incorporates an elastomeric valve closure member.

Unloading regulator designs are slower than two-path control systems because the pilot must first react to changes in P_{2} before the main regulator valve moves. Recall that in two-path designs, the pilot and main regulator diaphragms react simultaneously.
P_{1} passes through a fixed restriction and fills the space above the regulator diaphragm. This fixed restriction can be adjusted to increase or decrease regulator gain. P_{1} also fills the cavity below the regulator diaphragm. Because the surface area on the top side of the diaphragm is larger than the area exposed to P_{1} below, the diaphragm is forced down against the cage to close the regulator.

When downstream demand increases, the pilot opens. When the pilot opens, regulator loading pressure escapes downstream much faster than P_{1} can bleed through the fixed restriction. As pressure above the regulator diaphragm decreases, P_{1} forces the diaphragm away from its seat.

When downstream demand is reduced, P_{2} increases until it's high enough to compress the pilot spring and close the pilot valve. As the pilot valve closes, P_{1} continues to pass through the fixed restriction and flows into the area above the main regulator diaphragm. This loading pressure, P_{L}, forces the diaphragm back toward the cage, reducing flow through the regulator.

TECHNICAL

Selecting and Sizing Pressure Reducing Regulators

Introduction

Those who are new to the regulator selection and sizing process are often overwhelmed by the sheer number of regulator types available and the seemingly endless lists of specifications in manufacturer's literature. This application guide is designed to assist you in selecting a regulator that fits your application's specific needs.

Although it might seem obvious, the first step is to consider the application itself. Some applications immediately point to a group of regulators designed specifically for that type of service. The Application Guide has sections to help identify regulators that are designed for specific applications. There are Application Maps, Quick Selection Guides, an Applications section, and Product Pages. The Application Map shows some of the common applications and the regulators that are used in those applications. The Quick Selection Guide lists the regulators by application, and provides important selection information about each regulator. The Applications section explains the applications covered in the section and it also explains many of the application considerations. The Product Pages provide specific details about the regulators that are suitable for the applications covered in the section. To begin selecting a regulator, turn to the Quick Selection Guide in the appropriate Applications section.

Quick Selection Guides

Quick Selection Guides identify the regulators with the appropriate pressure ratings, outlet pressure ranges, and capacities. These guides quickly narrow the range of potentially appropriate regulators. The choices identified by using a Quick Selection Guide can be narrowed further by using the Product Pages to find more information about each of the regulators.

Product Pages

Identifying the regulators that can pass the required flow narrows the possible choices further. When evaluating flow requirements, consider the minimum inlet pressure and maximum flow requirements. Again, this worst case combination ensures that the regulator can pass the required flow under all anticipated conditions.

After one or more regulators have been identified as potentially suitable for the service conditions, consult specific Product Pages to check regulator specifications and capabilities. The application requirements are compared to regulator specifications to narrow the
range of appropriate selections. The following specifications can be evaluated in the Product Pages:

- Product description and available sizes
- Maximum inlet and outlet pressures (operating and emergency)
- Outlet pressure ranges
- Flow capacity
- End connection styles
- Regulator construction materials
- Accuracy
- Pressure registration (internal or external)
- Temperature capabilities

After comparing the regulator capabilities with the application requirements, the choices can be narrowed to one or a few regulators. Final selection might depend upon other factors including special requirements, availability, price, and individual preference.

Special Requirements

Finally, evaluate any special considerations, such as the need for external control lines, special construction materials, or internal overpressure protection. Although overpressure protection might be considered during sizing and selection, it is not covered in this section.

The Role of Experience

Experience in the form of knowing what has worked in the past, and familiarity with specific products, has great value in regulator sizing and selection. Knowing the regulator performance characteristics required for a specific application simplifies the process. For example, when fast speed of response is required, a direct-operated regulator may come to mind; or a pilot-operated regulator with an auxiliary, large capacity pilot to speed changes in loading pressure.

Sizing Equations

Sizing equations are useful when sizing pilot-operated regulators and relief valves. They can also be used to calculate the wideopen flow of direct-operated regulators. Use the capacity tables or curves in this application guide when sizing direct-operated regulators and relief/backpressure regulators. The sizing equations are in the Valve Sizing Calculations section.

Selecting and Sizing Pressure Reducing Regulators

General Sizing Guidelines

The following are intended to serve only as guidelines when sizing pressure reducing regulators. When sizing any regulator, consult with experienced personnel or the regulator manufacturer for additional guidance and information relating to specific applications.

Body Size

Regulator body size should never be larger than the pipe size. However, a properly sized regulator may be smaller than the pipeline.

Construction

Be certain that the regulator is available in materials that are compatible with the controlled fluid and the temperatures used. Also, be sure that the regulator is available with the desired end connections.

Pressure Ratings

While regulators are sized using minimum inlet pressures to ensure that they can provide full capacity under all conditions, pay particular attention to the maximum inlet and outlet pressure ratings.

Wide-Open Flow Rate

The capacity of a regulator when it has failed wide-open is usually greater than the regulating capacity. For that reason, use the regulating capacities when sizing regulators, and the wide-open flow rates only when sizing relief valves.

Outlet Pressure Ranges and Springs

If two or more available springs have published outlet pressure ranges that include the desired pressure setting, use the spring with the lower range for better accuracy. Also, it is not necessary to attempt to stay in the middle of a spring range, it is acceptable to use the full published outlet pressure range without sacrificing spring performance or life.

Accuracy

Of course, the need for accuracy must be evaluated. Accuracy is generally expressed as droop, or the reduction of outlet pressure experienced as the flow rate increases. It is stated in percent, inches of water column, or pounds per square inch. It indicates the difference between the outlet pressure at low flow rates and the outlet pressure at the published maximum flow rate. Droop is also called offset or proportional band.

Inlet Pressure Losses

The regulator inlet pressure used for sizing should be measured directly at the regulator inlet. Measurements made at any distance upstream from the regulator are suspect because line loss can significantly reduce the actual inlet pressure to the regulator. If the regulator inlet pressure is given as a system pressure upstream, some compensation should be considered. Also, remember that downstream pressure always changes to some extent when inlet pressure changes.

Orifice Diameter

The recommended selection for orifice size is the smallest diameter that will handle the flow. This can benefit operation in several ways: instability and premature wear might be avoided, relief valves may be smaller, and lockup pressures may be reduced.

Speed of Response

Direct-operated regulators generally have faster response to quick flow changes than pilot-operated regulators.

Turn-Down Ratio

Within reasonable limits, most soft-seated regulators can maintain pressure down to zero flow. Therefore, a regulator sized for a high flow rate will usually have a turndown ratio sufficient to handle pilot-light sized loads during periods of low demand.

Sizing Exercise: Industrial Plant Gas Supply

Regulator selection and sizing generally requires some subjective evaluation and decision making. For those with little experience, the best way to learn is through example. Therefore, these exercises present selection and sizing problems for practicing the process of identifying suitable regulators.

Our task is to select a regulator to supply reduced pressure natural gas to meet the needs of a small industrial plant. The regulated gas is metered before entering the plant. The selection parameters are:

- Minimum inlet pressure, $\mathrm{P}_{1 \text { min }}=30 \mathrm{psig}$
- Maximum inlet pressure, $\mathrm{P}_{{ }_{1 \text { max }}}=40 \mathrm{psig}$
- Outlet pressure setting, $\mathrm{P}_{2}=1 \mathrm{psig}$
- Flow, Q = 95000 SCFH
- Accuracy (droop required) $=10 \%$ or less

Selecting and Sizing Pressure Reducing Regulators

Figure 1. Natural Gas Supply

Quick Selection Guide

Turn to the Commercial/Industrial Quick Selection Guide. From the Quick Selection Guide, we find that the choices are:

- Type 133
- Type 1098 -EGR

Product Pages

Under the product number on the Quick Selection Guide is the page number of the product page. Look at the flow capacities of each of the possible choices. From the product pages we found the following:

- At 30 psig inlet pressure and 10% droop, the Type 133 has a flow capacity of 90000 SCFH . This regulator does not meet the required flow capacity.
- At 30 psig inlet pressure, the Type 1098-EGR has a flow capacity of 131000 SCFH. By looking at the Proportional Band (Droop) table, we see that the Type 6352 pilot with the yellow pilot spring and the green main valve has 0.05 psig droop. This regulator meets the selection criteria.

Final Selection

We find that the Type 1098-EGR meets the selection criteria.

Overpressure Protection Methods

Overpressure protective devices are of vital concern. Safety codes and current laws require their installation each time a pressure reducing station is installed that supplies gas from any system to another system with a lower maximum allowable operating pressure.

Methods of Overpressure Protection

The most commonly used methods of overpressure protection, not necessarily in order of use or importance, include:

- Relief Valves (Figure 1)
- Monitors (Figures 2 and 3)
- Series Regulation (Figure 4)
- Shutoff (Figure 5)
- Relief Monitor (Figure 6)

Figure 1. Relief Valve Schematic

Relief Valves

A relief valve is a device that vents process fluid to atmosphere to maintain the pressure downstream of the regulator below the safe maximum pressure. Relief is a common form of overpressure protection typically used for low to medium capacity applications. (Note: Fisher ${ }^{\circledR 1}$ relief valves are not ASME safety relief valves.)

Types of Relief Valves

The basic types of relief valves are:

- Pop type
- Direct-operated relief valves
- Pilot-operated relief valves
- Internal relief valves

The pop type relief valve is the simplest form of relief. Pop relief valves tend to go wide-open once the pressure has exceeded its setpoint by a small margin. The setpoint can drift over time, and because of its quick opening characteristic the pop relief can sometimes become unstable when relieving, slamming open and closed. Many have a non-adjustable setpoint that is set and pinned at the factory.

If more accuracy is required from a relief valve, the direct-operated relief valve would be the next choice. They can throttle better than a pop relief valve, and tend to be more stable, yet are still relatively simple. Although there is less drift in the setpoint of the direct-operated relief valve, a significant amount of build-up is often required to obtain the required capacity.

The pilot-operated relief valves have the most accuracy, but are also the most complicated and expensive type of relief. They use a pilot to dump loading pressure, fully stroking the main valve with very little build-up above setpoint. They have a large capacity and are available in larger sizes than other types of relief.

Many times, internal relief will provide adequate protection for a downstream system. Internal relief uses a relief valve built into the regulator for protection. If the pressure builds too far above the setpoint of the regulator, the relief valve in the regulator opens up, allowing excess pressure to escape through the regulator vent.

Advantages

The relief valve is considered to be the most reliable type of overpressure protection because it is not subject to blockage by foreign objects in the line during normal operations. It also imposes no decrease in the regulator capacity which it is protecting, and it has the added advantage of being its own alarm when it vents. It is normally reasonable in cost and keeps the customer in service despite the malfunction of the pressure reducing valve.

Disadvantages

When the relief valve blows, it could possibly create a hazard in the surrounding area by venting. The relief valve must be sized carefully to relieve the gas or fluid that could flow through the pressure reducing valve at its maximum inlet pressure and in the wide-open position, assuming no flow to the downstream. Therefore, each application must be sized individually. The requirement for periodic testing of relief valves also creates an operational and/or public relations problem.

Overpressure Protection Methods

Figure 2. Monitoring Regulators Schematic

Monitoring Regulators

Monitoring is overpressure control by containment. When the working pressure reducing valve ceases to control the pressure, a second regulator installed in series, which has been sensing the downstream pressure, goes into operation to maintain the downstream pressure at a slightly higher than normal pressure. The monitoring concept is gaining in popularity, especially in low-pressure systems, because very accurate relay pilots permit reasonably close settings of the working and monitoring regulators.

The two types of wide-open monitoring are upstream and downstream monitoring. One question often asked is, "Which is better, upstream or downstream monitoring?" Using two identical regulators, there is no difference in overall capacity with either method.

When using monitors to protect a system or customer who may at times have zero load, a small relief valve is sometimes installed downstream of the monitor system with a setpoint just above the monitor. This allows for a token relief in case dust or dirt in the system prevents bubble tight shutoff of the regulators.

Advantages

The major advantage is that there is no venting to atmosphere. During an overpressure situation, monitoring keeps the customer on line and keeps the downstream pressure relatively close to the setpoint of the working regulator. Testing is relatively easy and safe. To perform a periodic test on a monitor, increase the outlet set pressure of the working device and watch the pressure to determine if the monitor takes over.

Disadvantages

Compared to relief valves, monitoring generally requires a higher initial investment. Monitoring regulators are subject to blocking, which is why filters or strainers are specified with increasing frequency. Because the monitor is in series, it is an added restriction in the line. This extra restriction can sometimes force one to use a larger, more expensive working regulator.

Figure 3. Working Monitor Schematic

Working Monitor

A variation of monitoring overpressure protection that overcomes some of the disadvantages of a wide-open monitor is the "working monitor" concept wherein a regulator upstream of the working regulator uses two pilots. This additional pilot permits the monitoring regulator to act as a series regulator to control an intermediate pressure during normal operation. In this way, both units are always operating and can be easily checked for proper operation. Should the downstream pressure regulator fail to control, however, the monitoring pilot takes over the control at a slightly higher than normal pressure and keeps the customer on line. This is pressure control by containment and eliminates public relations problems.

Figure 4. Series Regulation Schematic

Series Regulation

Series regulation is also overpressure protection by containment in that two regulators are set in the same pipeline. The first unit maintains an inlet pressure to the second valve that is within the maximum allowable operating pressure of the downstream system. Under this setup, if either regulator should fail, the resulting downstream pressure maintained by the other regulator would not exceed the safe maximum pressure.

This type of protection is normally used where the regulator station is reducing gas to a pressure substantially below the maximum allowable operating pressure of the distribution system being supplied. Series regulation is also found frequently in farm taps and in similar situations within the guidelines mentioned above.

Overpressure Protection Methods

Advantages
Again, nothing is vented to atmosphere.

Disadvantages

Because the intermediate pressure must be cut down to a pressure that is safe for the entire downstream, the second-stage regulator often has very little pressure differential available to create flow. This can sometimes make it necessary to increase the size of the second regulator significantly. Another drawback occurs when the first-stage regulator fails and no change in the final downstream pressure is noticed because the system operates in what appears to be a "normal" manner without benefit of protection. Also, the first-stage regulator and intermediate piping must be capable of withstanding and containing maximum upstream pressure.

The second-stage regulator must also be capable of handling the full inlet pressure in case the first-stage unit fails to operate. In case the second-stage regulator fails, its actuator will be subjected to the intermediate pressure set by the first-stage unit. The secondstage actuator pressure ratings should reflect this possibility.

Figure 5. Shutoff Schematic

Shutoff Devices

The shutoff device also accomplishes overpressure protection by containment. In this case, the customer is shutoff completely until the cause of the malfunction is determined and the device is manually reset. Many gas distribution companies use this as an added measure of protection for places of public assembly such as schools, hospitals, churches, and shopping centers. In those cases, the shutoff device is a secondary form of overpressure protection. Shutoff valves are also commonly used by boiler manufacturers in combustion systems.

Advantages

By shutting off the customer completely, the safety of the downstream system is assured. Again, there is no public relations problem or hazard from venting gas or other media.

Disadvantages

The customer may be shutoff because debris has temporarily lodged under the seat of the operating regulator, preventing tight shutoff. A small relief valve can take care of this situation.

On a distribution system with a single supply, using a slam-shut can require two trips to each customer, the first to shutoff the service valve, and the second visit after the system pressure has been restored to turn the service valve back on and re-light the appliances. In the event a shutoff is employed on a service line supplying a customer with processes such as baking, melting metals, or glass making, the potential economic loss could dictate the use of an overpressure protection device that would keep the customer online.

Another problem associated with shutoffs is encountered when the gas warms up under no-load conditions. For instance, a regulator locked up at approximately 7 -inches w.c. could experience a pressure rise of approximately 0.8 -inch w.c. per degree Fahrenheit rise, which could cause the high-pressure shutoff to trip when there is actually no equipment failure.

Figure 6. Relief Monitor Schematic

Relief Monitor

Another concept in overpressure protection for small industrial and commercial loads, up to approximately 10000 cubic feet per hour, incorporates both an internal relief valve and a monitor. In this device, the relief capacity is purposely restricted to prevent excess venting of gas in order to bring the monitor into operation more quickly. The net result is that the downstream pressure is protected, in some cases to less than 1 psig. The amount of gas vented under maximum inlet pressure conditions does not exceed the amount vented by a domestic relief type service regulator.

Overpressure Protection Methods

Types of Overpressure Protection						
PERFORMANCE QUESTIONS	RELIEF	WORKING MONITOR	MONITOR	SERIES REGULATION	SHUTOFF	RELIEF MONITOR
Keeps application online?	Yes	Yes	Yes	Yes	No	Yes
Venting to atmosphere?	Yes	No	No	No	No	Minor
Manual resetting required after operation?	No	No	No	No	Yes	No
Reduces capacity of regulator?	No	Yes	Yes	Yes	No	No
Constantly working during normal operation?	No	Yes	No	Yes	No	Yes
Demands "emergency" action?	Yes	No	No	No	Yes	Maybe
Will surveillance of pressure charts indicate partial loss of performance of overpressure devices?	No	Yes	Maybe	Yes	No	No
Will surveillance of pressure charts indicate regulator has failed and safety device is in control?	Yes	Yes	Yes	Yes	Yes	Yes

With this concept, the limitation by regulator manufacturers of inlet pressure by orifice size, as is found in "full relief" devices, is overcome. Downstream protection is maintained, even with abnormally high inlet pressure. Public relations problems are kept to a minimum by the small amount of vented gas. Also, the unit does not require manual resetting, but can go back into operation automatically.

Dust or dirt can clear itself off the seat, but if the obstruction to the disk closing still exists when the load goes on, the customer would be kept online. When the load goes off, the downstream pressure will again be protected. During normal operation, the monitoring portion of the relief monitor is designed to move slightly with minor fluctuations in downstream pressure or flow.

Summary

From the foregoing discussion, it becomes obvious that there are many design philosophies available and many choices of equipment to meet overpressure protection requirements. Also, assume the
overpressure device will be called upon to operate sometime after it is installed. The overall design must include an analysis of the conditions created when the protection device operates.

The accompanying table shows:

- What happens when the various types of overpressure protection devices operate
- The type of reaction required
- The effect upon the customer or the public
- Some technical conditions

These are the general characteristics of the various types of safety devices. From the conditions and results shown, it is easier to decide which type of overpressure equipment best meets your needs. Undoubtedly, compromises will have to be made between the conditions shown here and any others which may govern your operating parameters.

TECHNICAL

Principles of Relief Valves

Overpressure Protection

Overpressure protection is a primary consideration in the design of any piping system. The objective of overpressure protection is to maintain the pressure downstream of a regulator at a safe maximum value.

Figure 1. Distribution System

In the system shown in Figure 1, a high-pressure transmission system delivers natural gas through a pressure reducing regulator to a lower pressure system that distributes gas to individual customers. The regulators, the piping, and the devices that consume gas are protected from overpressure by relief valves. The relief valve's setpoint is adjusted to a level established by the lowest maximum pressure rating of any of the lower pressure system components.

Maximum Pressure Considerations

Overpressure occurs when the pressure of a system is above the setpoint of the device controlling its pressure. It is evidence of some failure in the system (often the upstream regulator), and it can cause the entire system to fail if it's not limited. To implement overpressure protection, the weakest part in the pressure system is identified and measures are taken to limit overpressure to that component's maximum pressure rating. The most vulnerable components are identified by examining the maximum pressure ratings of the:

- Downstream equipment
- Low-pressure side of the main regulator
- Piping

The lowest maximum pressure rating of the three is the maximum allowable pressure.

Downstream Equipment

The downstream component (appliance, burner, boiler, etc.) with the lowest maximum pressure rating sets the highest pressure that all the downstream equipment can be subjected to.

Main Regulator

Pressure reducing regulators have different pressure ratings which refer to the inlet, outlet, and internal components. The lowest of these should be used when determining the maximum allowable pressure.

Piping

Piping is limited in its ability to contain pressure. In addition to any physical limitations, some applications must also conform to one or more applicable pressure rating codes or regulations.

Relief Valves

Relief involves maintaining the pressure downstream of a regulator at a safe maximum pressure using any device that vents fluid to a lower pressure system (often the atmosphere). Relief valve exhaust must be directed or piped to a safe location. Relief valves perform this function. They are considered to be one of the most reliable types of overpressure protection available and are available in a number of different types. Fisher ${ }^{\circledR}$ relief valves are not ASME safety relief valves.

Figure 2. Types of Relief Valves

Principles of Relief Valves

Relief Valve Popularity

Relief valves are popular for several reasons. They do not block the normal flow through a line. They do not decrease the capacities of the regulators they protect. And, they have the added advantage of being an alarm if they vent to atmosphere.

Relief Valve Types

Relief valves are available in four general types. These include: pop type, direct-operated, pilot-operated, and internal relief valves.

Selection Criteria

Pressure Build-up

Figure 3. Pressure Build-up

A relief valve has a setpoint at which it begins to open. For the valve to fully open and pass the maximum flow, pressure must build up to some level above the setpoint of the relief valve. This is known as pressure build-up over setpoint, or simply build-up.

Periodic Maintenance

A relief valve installed in a system that normally performs within design limits is very seldom exercised. The relief valve sits and waits for a failure. If it sits for long periods it may not perform as expected. Disks may stick in seats, setpoints can shift over time, and small passages can become clogged with pipeline debris. Therefore, periodic maintenance and inspection is recommended. Maintenance requirements might influence the selection of a relief valve.

Cost Versus Performance

Given several types of relief valves to choose from, selecting one type is generally based on the ability of the valve to provide adequate protection at the most economical cost. Reduced pressure build-up and increased capacity generally come at an increased price.

Installation and Maintenance Considerations

Initial costs are only a part of the overall cost of ownership. Maintenance and installation costs must also be considered over the life of the relief valve. For example, internal relief might be initially more economical than an external relief valve. However, maintaining a regulator with internal relief requires that the system be shut down and the regulator isolated. This may involve additional time and the installation of parallel regulators and relief valves if flow is to be maintained to the downstream system during maintenance operations.

Figure 4. Pop Type Relief Valve Construction and Operation

Pop Type Relief Valve

The most simple type of relief valve is the pop type. They are used wherever economy is the primary concern and some setpoint drift is acceptable.

Operation

Pop type relief valves are essentially on-off devices. They operate in either the closed or wide-open position. Pop type designs register pressure directly on a spring-opposed poppet. The poppet assembly includes a soft disk for tight shutoff against the seat ring. When the inlet pressure increases above setpoint, the poppet assembly is pushed away from the seat. As the poppet rises, pressure registers against a greater surface area of the poppet. This dramatically increases the force on the poppet. Therefore, the poppet tends to travel to the fully open position reducing pressure build-up.

Principles of Relief Valves

Build-up Over Setpoint

Recall that pressure build-up relates capacity to pressure; increasing capacity requires some increase in pressure. In throttling relief valves, pressure build-up is related to accuracy. In pop type relief valves, build-up over setpoint results largely because the device is a restriction to flow rather than the spring rate of the valve's loading spring.

Fixed Setpoint

The setpoint of a pop type valve cannot be adjusted by the user. The spring is initially loaded by the manufacturer. A pinned spring retainer keeps the spring in position. This is a safety measure that prevents tampering with the relief valve setpoint.

Typical Applications

This type of relief valve may be used where venting to the atmosphere is acceptable, when the process fluid is compatible with the soft disk, and when relief pressure variations are allowable. They are often used as inexpensive token relief. For example, they may be used simply to provide an audible signal of an overpressure condition.

These relief valves may be used to protect against overpressure stemming from a regulator with a minimal amount of seat leakage. Unchecked, this seat leakage could allow downstream pressure to build to full P_{1} over time. The use of a small pop type valve can be installed to protect against this situation.

These relief valves are also commonly installed with a regulator in a natural gas system farm tap, in pneumatic lines used to operate air drills, jackhammers, and other pneumatic equipment, and in many other applications.

Advantages

Pop type relief valves use few parts. Their small size allows installation where space is limited. Also, low initial cost, easy installation, and high capacity per dollar invested can result in economical system relief.

Disadvantages

The setpoint of a pop type relief valve may change over time. The soft disk may stick to the seat ring and cause the pop pressure to increase.

As an on-off device, this style of relief valve does not throttle flow over a pressure range. Because of its on-off nature, this type of relief valve may create pressure surges in the downstream system.

Figure 5. Direct-Operated Relief Valve Schematic

If the relief valve capacity is significantly larger than the failed regulator's capacity, the relief valve may over-compensate each time it opens and closes. This can cause the downstream pressure system to become unstable and cycle. Cycling can damage the relief valve and downstream equipment.

Direct-Operated Relief Valves

Compared to pop type relief valves, direct-operated relief valves provide throttling action and may require less pressure build-up to open the relief valve.

Operation

A schematic of a direct-operated relief valve is shown in Figure 5. It looks like an ordinary direct-operated regulator except that it senses upstream pressure rather than downstream pressure. And, it uses a spring-close rather than a spring-open action. It contains the same essential elements as a direct-operated regulator:

- A diaphragm that measures system pressure
- A spring that provides the initial load to the diaphragm and is used to establish the relief setpoint
- A valve that throttles the relief flow

TECHNICAL

Principles of Relief Valves

Opening the Valve

As the inlet pressure rises above the setpoint of the relief valve, the diaphragm is pushed upward moving the valve plug away from the seat. This allows fluid to escape.

Pressure Build-up Over Setpoint

As system pressure increases, the relief valve opens wider. This allows more fluid to escape and protects the system. The increase in pressure above the relief setpoint that is required to produce more flow through the relief valve is referred to as pressure build-up. The spring rate and orifice size influence the amount of pressure build-up that is required to fully stroke the valve.

Figure 6. Type 289 Relief Valve with Pitot Tube

Product Example

Pitot Tube

The relief valve shown in Figure 6 includes a pitot tube to reduce pressure build-up. When the valve is opening, high fluid velocity through the seat ring creates an area of relatively low pressure. Low pressure near the end of the pitot tube draws fluid out of the volume above the relief valve diaphragm and creates a partial vacuum which helps to open the valve. The partial vacuum above the diaphragm increases the relief valve capacity with less pressure build-up over setpoint.

Selection Criteria

Pressure Build-up

Some direct-operated relief valves require significant pressure build-up to achieve maximum capacity. Others, such as those using pitot tubes, often pass high flow rates with minimal pressure build-up. Direct-operated relief valves can provide good accuracy within their design capacities.

plug and seat ring main valve

eLastomeric element main valve

Typical Applications

Direct-operated relief valves are commonly used in natural gas systems supplying commercial enterprises such as restaurants and laundries, and in industry to protect industrial furnaces and other equipment.

Figure 7. Pilot-Operated Designs

Principles of Relief Valves

Cost Versus Performance

The purchase price of a direct-operated relief valve is typically lower than that of a pilot-operated design of the same size. However, pilot-operated designs may cost less per unit of capacity at very high flow rates.

Pilot-Operated Relief Valves

Pilot-operated relief valves utilize a pair of direct-operated relief valves; a pilot and a main relief valve. The pilot increases the effect of changes in inlet pressure on the main relief valve.

Operation

The operation of a pilot-operated relief valve is quite similar to the operation of a pilot-operated pressure reducing regulator. In normal operation, when system pressure is below setpoint of the relief valve, the pilot remains closed. This allows loading pressure to register on top of the main relief valve diaphragm. Loading pressure on top of the diaphragm is opposed by an equal pressure (inlet pressure) on the bottom side of the diaphragm. With little or no pressure differential across the diaphragm, the spring keeps the valve seated. Notice that a light-rate spring may be used because it does not oppose a large pressure differential across the diaphragm. The light-rate spring enables the main valve to travel to the wideopen position with little pressure build-up.

Increasing Inlet Pressure

When the inlet pressure rises above the relief setpoint, the pilot spring is compressed and the pilot valve opens. The open pilot bleeds fluid out of the main valve spring case, decreasing pressure above the main relief valve diaphragm. If loading pressure escapes faster than it can be replaced through the restriction, the loading pressure above the main relief valve diaphragm is reduced and the relief valve opens. System overpressure exhausts through the vent.

Decreasing Inlet Pressure

If inlet pressure drops back to the relief valve setpoint, the pilot loading spring pushes the pilot valve plug back against the pilot valve seat. Inlet pressure again loads the main relief valve diaphragm and closes the main valve.

Figure 8. Pilot-Operated Relief Valve

Control Line

The control line connects the pilot with the pressure that is to be limited. When overpressure control accuracy is a high priority, the control line tap is installed where protection is most critical.

Product Example

Physical Description

This relief valve is a direct-operated relief valve with a pilot attached (Figure 8). The pilot is a modified direct-operated relief valve, the inlet pressure loads the diaphragm and flows through a restriction to supply loading pressure to the main relief valve diaphragm.

Operation

During normal operation, the pilot is closed allowing loading pressure to register above the main relief valve's diaphragm. This pressure is opposed by inlet pressure acting on the bottom of the diaphragm.

If inlet pressure rises above setpoint, the pilot valve opens, exhausting the loading pressure. If loading pressure is reduced above the main relief valve diaphragm faster than it is replaced through the pilot fixed restriction, loading pressure is reduced and inlet pressure below the diaphragm will cause the main regulator to open.

Technical

Principles of Relief Valves

REGULATORS THAT INCLUDE INTERNAL RELIEF VALVES OFTEN ELIMINATE THE REQUIREMENT FOR EXTERNAL OVERPRESSURE PROTECTION. THE ILLUSTRATION ON THE LEFT SHOWS THE REGULATOR WITH BOTH THE RELIEF VALVE AND THE REGULATOR VALVE IN THE CLOSED POSITION. THE ILLUSTRATION ON THE RIGHT SHOWS THE SAME UNIT AFTER P HAS INCREASED ABOVE THE RELIEF VALVE SETPOINT. THE DIAPHRAGM HAS MOVED OFF THE RELIEF VALVE SEAT ALLOWING FLOW (EXCESS PRESSURE) TO EXHAUST THROUGH THE SCREENED VENT.

Figure 9. Internal Relief Design

If inlet pressure falls below the relief set pressure, the pilot spring will again close the pilot exhaust, increasing loading pressure above the main relief valve diaphragm. This increasing loading pressure causes the main valve to travel towards the closed position.

Performance

Pilot-operated relief valves are able to pass large flow rates with a minimum pressure build-up.

Typical Applications

Pilot-operated relief valves are used in applications requiring high capacity and low pressure build-up.

Selection Criteria

Minimal Build-up

The use of a pilot to load and unload the main diaphragm and the light-rate spring enables the main valve to travel wide-open with little pressure build-up over setpoint.

Throttling Action

The sensitive pilot produces smooth throttling action when inlet pressure rises above setpoint. This helps to maintain a steady downstream system pressure.

Internal Relief

Regulators that include internal relief valves may eliminate the requirement for external overpressure protection.

Operation

The regulator shown in Figure 9 includes an internal relief valve. The relief valve has a measuring element (the main regulator diaphragm), a loading element (a light spring), and a restricting element (a valve seat and disk). The relief valve assembly is located in the center of the regulator diaphragm.

Build-up Over Setpoint

Like other spring-loaded designs, internal relief valves will only open wider if the inlet pressure increases. The magnitude of pressure build-up is determined by the spring rates of the loading spring plus the main spring. Both springs are considered because they act together to resist diaphragm movement when pressure exceeds the relief valve setpoint.

Product Example

A typical internal relief regulator construction is shown in Figure 9. The illustration on the left shows the regulator with both the relief valve and regulator valve in the closed position. The illustration on the right shows the same unit after the inlet

Principles of Relief Valves

pressure has increased above the relief valve setpoint. The diaphragm has moved off the relief valve seat allowing the excess pressure to exhaust through the vent.

Performance and Typical Applications

This design is available in configurations that can protect many pressure ranges and flow rates. Internal relief is often used in applications such as farm taps, industrial applications where atmospheric exhaust is acceptable, and house service regulators.

Selection Criteria

Pressure Build-up

Relief setpoint is determined by a combination of the relief valve and regulator springs; this design generally requires significant pressure build-up to reach its maximum relief flow rate. For the same reason, internal relief valves have limited relief capacities. They may provide full relief capacity, but should be carefully sized for each application.

Space

Internal relief has a distinct advantage when there is not enough space for an external relief valve.

Cost versus Performance

Because a limited number of parts are simply added to the regulator, this type of overpressure protection is relatively inexpensive compared to external relief valves of comparable capacity.

Maintenance

Because the relief valve is an integral part of the regulator's diaphragm, the regulator must be taken out of service when maintenance is performed. Therefore, the application should be able to tolerate either the inconvenience of intermittent supply or the expense of parallel regulators and relief valves.

Selection and Sizing Criteria

There are a number of common steps in the relief valve selection and sizing process. For every application, the
maximum pressure conditions, the wide-open regulator flow capacity, and constant downstream demand should be determined. Finally, this information is used to select an appropriate relief valve for the application.

Maximum Allowable Pressure

Downstream equipment includes all the components of the system that contain pressure; household appliances, tanks, tools, machines, outlet rating of the upstream regulators, or other equipment. The component with the lowest maximum pressure rating establishes the maximum allowable system pressure.

Regulator Ratings

Pressure reducing regulators upstream of the relief valve have ratings for their inlet, outlet, and internal components. The lowest rating should be used when determining maximum allowable pressure.

Piping

Piping pressure limitations imposed by governmental agencies, industry standards, manufacturers, or company standards should be verified before defining the maximum overpressure level.

Maximum Allowable System Pressure

The smallest of the pressure ratings mentioned above should be used as the maximum allowable pressure. This pressure level should not be confused with the relief valve setpoint which must be set below the maximum allowable system pressure.

Determining Required Relief Valve Flow

A relief valve must be selected to exhaust enough flow to prevent the pressure from exceeding the maximum allowable system pressure. To determine this flow, review all upstream components for the maximum possible flow that will cause overpressure. If overpressure is caused by a pressure reducing regulator, use the regulator's wide-open flow coefficient to calculate the required flow of the relief valve. This regulator's wide-open flow is larger than the regulating flow used to select the pressure reducing regulator.

Sizing equations have been developed to standardize valve sizing. Refer to the Valve Sizing Calculations section to find these equations and explanations on how they are used.

Principles of Relief Valves

Determine Constant Demand

In some applications, the required relief capacity can be reduced by subtracting any load that is always on the system. This procedure should be approached with caution because it may be difficult to predict the worst-case scenario for downstream equipment failures. It may also be important to compare the chances of making a mistake in predicting the level of continuous flow consumption with the potential negative aspects of an error. Because of the hazards involved, relief valves are often sized assuming no continuous flow to downstream equipment.

Selecting Relief Valves

Required Information

We have already reviewed the variables required to calculate the regulator's wide-open flow rate. In addition, we need to know the type and temperature of the fluid in the system, and the size of the piping. Finally, if a vent stack will be required, any additional build-up due to vent stack resistance should be considered.

Regulator Lockup Pressure

A relief valve setpoint is adjusted to a level higher than the regulator's lockup pressure. If the relief valve setpoint overlaps lockup pressure of the regulator, the relief valve may open while the regulator is still attempting to control the system pressure.

Identify Appropriate Relief Valves

Once the size, relief pressure, and flow capacity are determined, we can identify a number of potentially suitable relief valves using the Quick Selection Guide in the front of each application section in this application guide. These selection guides give relief set (inlet) pressures, capacities, and type numbers. These guides can then be further narrowed by reviewing individual product pages in each section.

Final Selection

Final selection is usually a matter of compromise. Relief capacities, build-up levels, sensitivity, throttling capabilities, cost of installation and maintenance, space requirements, initial purchase price, and other attributes are all considered when choosing any relief valve.

Applicable Regulations

The relief valves installed in some applications must meet governmental, industry, or company criteria.

Sizing and Selection Exercise

To gain a better understanding of the selection and sizing process, it may be helpful to step through a typical relief valve sizing exercise.

Initial Parameters

We'll assume that we need to specify an appropriate relief valve for a regulator serving a large plant air supply. There is sufficient space to install the relief valve and the controlled fluid is clean plant air that can be exhausted without adding a vent stack.

Performance Considerations

The plant supervisor wants the relief valve to throttle open smoothly so that pressure surges will not damage instruments and equipment in the downstream system. This will require the selection of a relief valve that will open smoothly. Plant equipment is periodically shut down but the air supply system operates continuously. Therefore, the relief valve must also have the capacity to exhaust the full flow of the upstream system.

Upstream Regulator

The regulator used is 1 -inch in size with a $3 / 8$-inch orifice. The initial system parameters of pressure and flow were determined when the regulator was sized for this application.

Pressure Limits

The plant maintenance engineer has determined that the relief valve should begin to open at 20 psig , and downstream pressure should not rise above 30 psig maximum allowable system pressure.

Relief Valve Flow Capacity

The wide-open regulator flow is calculated to be 23188 SCFH.

TECHNICAL

Principles of Relief Valves

Relief Valve Selection

Quick Selection Guide

Find the Relief Valve Quick Selection Guide in this Application Guide; it gives relief set (inlet) pressures and comparative flow capacities of various relief valves. Because this guide is used to identify potentially suitable relief valves, we can check the relief set (inlet) pressures closest to 20 psig and narrow the range of choices. We find that two relief valves have the required flow capacity at our desired relief set (inlet) pressure.

Product Pages

If we look at the product pages for the potential relief valves, we find that a 1 -inch Type 289 H provides the required capacity within the limits of pressure build-up specified in our initial parameters.

Checking Capacity

Capacity curves for the 1 -inch Type 289 H with this spring are shown in Figure 10. By following the curve for the 20 psig setpoint to the point where it intersects with the 30 psig division, we find that our relief valve can handle more than the 23188 SCFH required.

Figure 10. Type 289H Flow Capacities

Principles of Series Regulation and Monitor Regulators

Series Regulation

Series regulation is one of the simplest systems used to provide overpressure protection by containment. In the example shown in Figure 1, the inlet pressure is 100 psig , the desired downstream pressure is 10 psig , and the maximum allowable operating pressure (MAOP) is 40 psig . The setpoint of the downstream regulator is 10 psig , and the setpoint of the upstream regulator is 30 psig .

Figure 1. Series Regulation

Failed System Response

If regulator B fails, downstream pressure $\left(\mathrm{P}_{2}\right)$ is maintained at the setpoint of regulator A less whatever drop is required to pass the required flow through the failed regulator B. If regulator A fails, the intermediate pressure will be 100 psig . Regulator B must be able to withstand 100 psig inlet pressure.

Regulator Considerations

Either direct-operated or pilot-operated regulators may be used in this system. Should regulator A fail, P_{1} \qquad will approach P_{1} so the outlet rating and spring casing rating of regulator A must be high enough to withstand full P_{1}. This situation may suggest the use of a relief valve between the two regulators to limit the maximum value of P_{I} \qquad diate.

Applications and Limitations

A problem with series regulation is maintaining tight control of P_{2} if the downstream regulator fails. In this arrangement, it is often impractical to have the setpoints very close together. If they are, the pressure drop across regulator B will be quite small. With a small pressure drop, a very large regulator may be required to pass the desired flow.

Because of the problem in maintaining close control of P_{2}, series regulation is best suited to applications where the regulator station is reducing pressure to a value substantially below the maximum allowable operating pressure of the downstream system. Farm taps are a good example. The problem of low-pressure drop across the second regulator is less pronounced in low flow systems.

Upstream Wide-Open Monitors

The only difference in configuration between series regulation and monitors is that in monitor installations, both regulators sense downstream pressure, P_{2}. Thus, the upstream regulator must have a control line.

IN WIDE-OPEN MONITOR SYSTEMS, BOTH REGULATORS SENSE DOWNSTREAM PRESSURE. SETPOINTS MAY BE VERY CLOSE TO EACH OTHER. IF THE WORKER REGULATOR FAILS, THE MONITOR ASSUMES CONTROL AT A SLIGHTLY HIGHER SETPOINT. IF THE MONITOR REGULATOR FAILS, THE WORKER CONTINUES TO PROVIDE CONTROL.

Figure 2. Wide-Open Upstream Monitor

System Values

In the example shown in Figure 2, assume that P_{1} is 100 psig , and the desired downstream pressure, P_{2}, is 10 psig . Also assume that the maximum allowable operating pressure of the downstream system is 20 psig; this is the limit we cannot exceed. The setpoint of the downstream regulator is set at 10 psig to maintain the desired P_{2} and the setpoint of the upstream regulator is set at 15 psig to maintain P_{2} below the maximum allowable operating pressure.

Normal Operation

When both regulators are functioning properly, regulator B holds P_{2} at its setpoint of 10 psig. Regulator A , sensing a pressure lower than its setpoint of 15 psig tries to increase P_{2} by going wide-open. This configuration is known as an upstream wide-open monitor where upstream regulator A monitors the pressure established by regulator B . Regulator A is referred to as the monitor or standby regulator while regulator B is called the worker or the operator.

Principles of Series Regulation and Monitor Regulators

Worker Regulator B Fails

If regulator B fails open, regulator A , the monitor, assumes control and holds P_{2} at 15 psig. Note that pressure P_{1} \qquad is now P_{2} plus whatever drop is necessary to pass the required flow through the failed regulator B.

Equipment Considerations

Wide-open monitoring systems may use either direct- or pilotoperated regulators, the choice of which is dependent on other system requirements. Obviously, the upstream regulator must have external registration capability in order to sense downstream pressure, P_{2}.

In terms of ratings, $\mathrm{P}_{\text {Intermediate }}$ will rise to full P_{1} when regulator A fails, so the body outlet of regulator A and the inlet of regulator B must be rated for full P_{1}.

Downstream Wide-Open Monitors

The difference between upstream and downstream monitor systems (Figure 3) is that the functions of the two regulators are reversed. In other words, the monitor, or standby regulator, is downstream of the worker, or operator. Systems can be changed from upstream to downstream monitors, and vice-versa, by simply reversing the setpoints of the two regulators.

THE ONLY DIFFERENCE BETWEEN UPSTREAM WIDE-OPEN MONITOR SYSTEMS AND DOWNSTREAM WIDE-OPEN MONITOR SYSTEMS IS THE ROLE EACH REGULATOR PLAYS. WORKERS AND MONITORS MAY BE SWITCHED BY SIMPLY REVERSING THE SETPOINTS

Figure 3. Wide-Open Downstream Monitor

Normal Operation

Again, assume an inlet pressure of 100 psig and a controlled pressure $\left(\mathrm{P}_{2}\right)$ of 10 psig. Regulator A is now the worker so it maintains P_{2} at its setpoint of 10 psig. Regulator B, the monitor, is set at 15 psig and so remains open.

Worker Regulator A Fails

If the worker, regulator A , fails in an open position, the monitor, regulator B, senses the increase in P_{2} and holds P_{2} at its setpoint of 15 psig. Note that $P_{\text {Intermediate }}$ is now P_{1} minus whatever drop is taken across the failed regulator A.

Upstream Versus Downstream Monitors

The decision to use either an upstream or downstream monitor system is largely a matter of personal preference or company policy.

In normal operation, the monitor remains open while the worker is frequently exercised. Many users see value in changing the system from an upstream to a downstream monitor at regular intervals, much like rotating the tires on an automobile. Most fluids have some impurities such as moisture, rust, or other debris, which may deposit on regulator components, such as stems, and cause them to become sticky or bind. Therefore, occasionally reversing the roles of the regulators so that both are exercised is sometimes seen as a means of ensuring that protection is available when needed. The job of switching is relatively simple as only the setpoints of the two regulators are changed. In addition, the act of changing from an upstream to a downstream monitor requires that someone visit the site so there is an opportunity for routine inspection.

Working Monitors

Working monitors (Figure 4) use design elements from both series regulation and wide-open monitors. In a working monitor installation, the two regulators are continuously working as series regulators to take two pressure cuts.

WORKING MONITOR SYSTEMS MUST USE A PILOT-OPERATED REGULATOR AS THE MONITOR, WHICH IS ALWAYS IN THE UPSTREAM POSITION. TWO PILOTS ARE USED ON THE MONITOR REGULATOR; ONE TO CONTROL THE INTERMEDIATE PRESSURE AND ONE TO MONITOR THE DOWNSTREAM PRESSURE. BY TAKING TWO PRESSURE DROPS, BOTH REGULATORS ARE ALLOWED TO EXERCISE.

Figure 4. Working Monitor

TECHNICAL

Principles of Series Regulation and Monitor Regulators

Downstream Regulator

The downstream regulator may be either direct or pilot-operated. It is installed just as in a series or wide-open monitor system. Its setpoint controls downstream pressure, P_{2}.

Upstream Regulator

The upstream regulator must be a pilot-operated type because it uses two pilots; a monitor pilot and a worker pilot. The worker pilot is connected just as in series regulation and controls the intermediate pressure P_{In} \qquad Its setpoint (45 psig) is at some intermediate value that allows the system to take two pressure drops. The monitor pilot is in series ahead of the worker pilot and is connected so that it senses downstream pressure, P_{2}. The monitor pilot setpoint (15 psig) is set slightly higher than the normal P_{2} (10 psig).

Normal Operation

When both regulators are performing properly, downstream pressure is below the setting of the monitor pilot, so it is fully open trying to raise system pressure. Standing wide-open, the monitor pilot allows the worker pilot to control the intermediate pressure, $P_{\text {Intermediate }}$ at 45 psig . The downstream regulator is controlling P_{2} at 10 psig .

Downstream Regulator Fails

If the downstream regulator fails, the monitor pilot will sense the increase in pressure and take control at 15 psig.

Upstream Regulator Fails

If the upstream regulator fails, the downstream regulator will remain in control at 10 psig . Note that the downstream regulator must be rated for the full system inlet pressure P_{1} of 100 psig because this will be its inlet pressure if the upstream regulator fails. Also note that the outlet rating of the upstream regulator, and any other components that are exposed to P_{tn} \qquad , must be rated for full P_{1}.

Sizing Monitor Regulators

The difficult part of sizing monitor regulators is that P_{I} \qquad is needed to determine the flow capacity for both regulators. Because $\mathrm{P}_{\text {Intermediate }}$ is not available, other sizing methods are used to determine the capacity. There are three methods for sizing monitor regulators: estimating flow when pressure drop is critical, assuming $\mathrm{P}_{\text {Intermediate }}$ to calculate flow, and the Fisher ${ }^{\circledR}$ Monitor Sizing Program.

Estimating Flow when Pressure Drop is Critical

If the pressure drop across both regulators from P_{1} to P_{2} is critical (assume P \qquad $=P_{1}-P_{2} / 2+P_{2}, P_{1}-P_{\text {Intermediate }} \geq P_{1}$, and P_{1} $-\mathrm{P}_{2} \geq 1 / 2 \mathrm{P}$ \qquad), and both regulators are the same type, the capacity of the two regulators together is 70 to 73% of a single regulator reducing the pressure from P_{1} to P_{2}.

Assuming $\mathrm{P}_{\text {Intermediate }}$ to Determine Flow

Assume $P_{\text {Intermediate }}$ is halfway between P_{1} and P_{2}. Guess a regulator size. Use the assumed $P_{\text {Intermediate }}$ and the C_{g} for each regulator to calculate the available flow rate for each regulator. If P \qquad was correct, the calculated flow through each regulator will be the same. If the flows are not the same, change $P_{\text {Intermediate }}$ and repeat the calculations. (P \qquad will go to the correct assumed pressure whenever the flow demand reaches maximum capacity.)

Fisher ${ }^{\circledR}$ Monitor Sizing Program

Emerson Process Management - Regulator Technologies offers a Monitor Sizing Program on the Regulator Technologies Literature CD. Call your local Sales Office to request a copy of the CD. To locate your local Sales Office, log on to: www.emersonprocess. com/regulators.

Vacuum Control

Vacuum Applications

Vacuum regulators and vacuum breakers are widely used in process plants. Conventional regulators and relief valves might be suitable for vacuum service if applied correctly. This section provides fundamentals and examples.

1 PSIG ($0,069 \mathrm{bar})=\mathbf{2 7 . 7}$-INCHES OF WATER $(69 \mathrm{mbar})=2.036$-INCHES OF MERCURY $1 \mathrm{~kg} / \mathrm{cm}^{2}=10.01$ METERS OF WATER $=0.7355$ METERS OF MERCURY

Figure 1. Vacuum Terminology

Vacuum Terminology

Engineers use a variety of terms to describe vacuum, which can cause some confusion. Determine whether the units are in absolute pressure or gauge pressure (0 psi gauge (0 bar gauge) is atmospheric pressure).

- $5 \mathrm{psig}(0,34 \mathrm{bar} \mathrm{g})$ vacuum is $5 \mathrm{psi}(0,34 \mathrm{bar})$ below atmospheric pressure.
- $-5 \mathrm{psig}(-0,34$ bar g$)$ is $5 \mathrm{psi}(0,34 \mathrm{bar})$ below atmospheric pressure.
- $9.7 \mathrm{psia}(0,67 \mathrm{bar} \mathrm{a})$ is $9.7 \mathrm{psi}(0,67 \mathrm{bar})$ above absolute zero or $5 \mathrm{psi}(0,34 \mathrm{bar})$ below atmospheric pressure $(14.7 \mathrm{psia}-5 \mathrm{psi}=9.7 \mathrm{psia}(1,01$ bar a $-0,34 \mathrm{bar}=0,67$ bar a) $)$.

Vacuum Control Devices

Just like there are pressure reducing regulators and pressure relief valves for positive pressure service, there are also two basic types of valves for vacuum service. The terms used for each are sometimes confusing. Therefore, it is sometimes necessary to ask further questions to determine the required function of the valve. The terms vacuum regulator and vacuum breaker will be used in these pages to differentiate between the two types.

Vacuum Regulators

Vacuum regulators maintain a constant vacuum at the regulator inlet. A loss of this vacuum (increase in absolute pressure) beyond setpoint registers on the diaphragm and opens the disk. It depends on the valve as to which side of the diaphragm control pressure is measured. Opening the valve plug permits a downstream vacuum of lower absolute pressure than the controlled vacuum to restore the upstream vacuum to its original setting.

Besides the typical vacuum regulator, a conventional regulator can be suitable if applied correctly. Any pressure reducing regulator (spring to open device) that has an external control line connection and an O-ring stem seal can be used as a vacuum regulator. Installation requires a control line to connect the vacuum being controlled and the spring case. The regulator spring range is now a negative pressure range and the body flow direction is the same as in conventional pressure reducing service.

Vacuum Breakers (Relief Valves)

Vacuum breakers are used in applications where an increase in vacuum must be limited. An increase in vacuum (decrease in absolute pressure) beyond a certain value causes the diaphragm to move and open the disk. This permits atmospheric pressure or a positive pressure, or an upstream vacuum that has higher absolute pressure than the downstream vacuum, to enter the system and restore the controlled vacuum to its original pressure setting.

A vacuum breaker is a spring-to-close device, meaning that if there is no pressure on the valve the spring will push the valve plug into its seat. There are various Fisher ${ }^{\circledR}$ brand products to handle this application. Some valves are designed as vacuum breakers. Fisher brand relief valves can also be used as vacuum breakers.

TECHNICAL

Vacuum Control

Figure 2. Typical Vacuum Regulator

A conventional relief valve can be used as a vacuum breaker, as long as it has a threaded spring case vent so a control line can be attached. If inlet pressure is atmospheric air, then the internal pressure registration from body inlet to lower casing admits atmospheric pressure to the lower casing. If inlet pressure is not atmospheric, a relief valve in which the lower casing can be vented to atmosphere when the body inlet is pressurized must be chosen. In this case, the terminology "blocked throat" and "external registration with O-ring stem seal" are used for clarity.

Figure 3. Typical Vacuum Breaker

A spring that normally has a range of 6 to 11 -inches w.c. (15 to 27 mbar) positive pressure will now have a range of 6 to 11 -inches w.c. (15 to 27 mbar) vacuum (negative pressure). It may be expedient to bench set the vacuum breaker if the type chosen uses a spring case closing cap. Removing the closing cap to gain access to the adjusting screw will admit air into the spring case when in vacuum service.

TECHNICAL

Vacuum Control

Vacuum Regulator Installation Examples

Figure 4. Type 133L

CONTROL PRESSURE (VACUUM)
LOADING PRESSURE
ATMOSPHERIC PRESSURE

Figure 5. Type Y695VRM used with Type 1098-EGR in a Vacuum Regulator Installation

Vacuum Control

Vacuum Breaker Installation Examples

Figure 6. Type 1805

Figure 7. Type Y690VB used with Type 1098-EGR in a Vacuum Breaker Installation. If the positive pressure exceeds the Type 1098-EGR casing rating, then a Type 67CF with a Type H800 relief valve should be added.

TECHNICAL

Vacuum Control

Vacuum Breaker Installation Examples

Figure 9. Type 66R Relief Valve used in a Vacuum Breaker Installation

Figure 10. Type 66RR Relief Valve used in a Vacuum Breaker Installation

Vacuum Control

BJ9004
Figure 11. Example of Gas Blanketing in Vacuum

Gas Blanketing in Vacuum

When applications arise where the gas blanketing requirements are in vacuum, a combination of a vacuum breaker and a regulator may be used. For example, in low inches of water column vacuum, a Type Y690VB vacuum breaker and a Type 66-112 vacuum regulator can be used for very precise control.

Vacuum blanketing is useful for vessel leakage to atmosphere and the material inside the vessel is harmful to the surrounding environment. If leakage were to occur, only outside air would enter the vessel because of the pressure differential in the tank. Therefore, any process vapors in the tank would be contained.

Features of Fisher ${ }^{\oplus}$ Brand Vacuum Regulators and Breakers

- Precision Control of Low Pressure Settings-Large diaphragm areas provide more accurate control at low pressure settings. Some of these regulators are used as pilots on our Tank Blanketing and Vapor Recovery Regulators. Therefore, they are designed to be highly accurate, usually within 1 -inch w.c. (2 mbar).
- Corrosion Resistance-Constructions are available in a variety of materials for compatibility with corrosive process gases. Wide selection of elastomers compatible with flowing media.
- Rugged Construction-Diaphragm case and internal parts are designed to withstand vibration and shock.
- Wide Product Offering-Fisher ${ }^{\text {® }}$ brand regulators can be either direct-operated or pilot-operated regulators.
- Fisher Brand Advantage-Widest range of products and a proven history in the design and manufacture of process control equipment. A sales channel that offers local stock and support.
- Spare Parts-Low cost parts that are interchangeable with other Fisher brand in your plant.
- Easy Sizing and Selection-Most applications can be sized utilizing the Fisher brand Sizing Program and Sizing Coefficients.

Valve Sizing Calculations (Traditional Method)

Introduction

Fisher ${ }^{\circledR}$ regulators and valves have traditionally been sized using equations derived by the company. There are now standardized calculations that are becoming accepted worldwide. Some product literature continues to demonstrate the traditional method, but the trend is to adopt the standardized method. Therefore, both methods are covered in this application guide.

Improper valve sizing can be both expensive and inconvenient. A valve that is too small will not pass the required flow, and the process will be starved. An oversized valve will be more expensive, and it may lead to instability and other problems.

The days of selecting a valve based upon the size of the pipeline are gone. Selecting the correct valve size for a given application requires a knowledge of process conditions that the valve will actually see in service. The technique for using this information to size the valve is based upon a combination of theory and experimentation.

Sizing for Liquid Service

Using the principle of conservation of energy, Daniel Bernoulli found that as a liquid flows through an orifice, the square of the fluid velocity is directly proportional to the pressure differential across the orifice and inversely proportional to the specific gravity of the fluid. The greater the pressure differential, the higher the velocity; the greater the density, the lower the velocity. The volume flow rate for liquids can be calculated by multiplying the fluid velocity times the flow area.

By taking into account units of measurement, the proportionality relationship previously mentioned, energy losses due to friction and turbulence, and varying discharge coefficients for various types of orifices (or valve bodies), a basic liquid sizing equation can be written as follows

$$
\begin{equation*}
\mathrm{Q}=\mathrm{C}_{\mathrm{v}} \sqrt{\Delta \mathrm{P} / \mathrm{G}} \tag{1}
\end{equation*}
$$

where:
$Q=$ Capacity in gallons per minute
$C_{v}=$ Valve sizing coefficient determined experimentally for each style and size of valve, using water at standard conditions as the test fluid
$\Delta \mathrm{P}=$ Pressure differential in psi
$\mathrm{G}=$ Specific gravity of fluid (water at $60^{\circ} \mathrm{F}=1.0000$)
Thus, C_{v} is numerically equal to the number of U.S. gallons of water at $60^{\circ} \mathrm{F}$ that will flow through the valve in one minute when the pressure differential across the valve is one pound per square inch. C_{v} varies with both size and style of valve, but provides an index for comparing liquid capacities of different valves under a standard set of conditions.

Figure 1. Standard FCI Test Piping for C_{v} Measurement

To aid in establishing uniform measurement of liquid flow capacity coefficients $\left(\mathrm{C}_{\mathrm{v}}\right)$ among valve manufacturers, the Fluid Controls Institute (FCI) developed a standard test piping arrangement, shown in Figure 1. Using such a piping arrangement, most valve manufacturers develop and publish C_{v} information for their products, making it relatively easy to compare capacities of competitive products.

To calculate the expected C_{v} for a valve controlling water or other liquids that behave like water, the basic liquid sizing equation above can be re-written as follows

$$
\begin{equation*}
\mathrm{C}_{\mathrm{v}}=\mathrm{Q} \sqrt{\frac{\mathrm{G}}{\Delta \mathrm{P}}} \tag{2}
\end{equation*}
$$

Viscosity Corrections

Viscous conditions can result in significant sizing errors in using the basic liquid sizing equation, since published C_{v} values are based on test data using water as the flow medium. Although the majority of valve applications will involve fluids where viscosity corrections can be ignored, or where the corrections are relatively small, fluid viscosity should be considered in each valve selection.

Emerson Process Management has developed a nomograph (Figure 2) that provides a viscosity correction factor $\left(\mathrm{F}_{\mathrm{v}}\right)$. It can be applied to the standard C_{v} coefficient to determine a corrected coefficient $\left(\mathrm{C}_{\mathrm{vr}}\right)$ for viscous applications.

Finding Valve Size

Using the C_{v} determined by the basic liquid sizing equation and the flow and viscosity conditions, a fluid Reynolds number can be found by using the nomograph in Figure 2. The graph of Reynolds number vs. viscosity correction factor $\left(\mathrm{F}_{\mathrm{v}}\right)$ is used to determine the correction factor needed. (If the Reynolds number is greater than 3500 , the correction will be ten percent or less.) The actual required $\mathrm{C}_{\mathrm{v}}\left(\mathrm{C}_{\mathrm{vr}}\right)$ is found by the equation:

$$
\begin{equation*}
C_{v r}=F_{v} C_{v} \tag{3}
\end{equation*}
$$

From the valve manufacturer's published liquid capacity information, select a valve having a C_{v} equal to or higher than the required coefficient $\left(\mathrm{C}_{\mathrm{vr}}\right)$ found by the equation above.

Valve Sizing Calculations (Traditional Method)

Figure 2. Nomograph for Determining Viscosity Correction

Nomograph Instructions

Use this nomograph to correct for the effects of viscosity. When assembling data, all units must correspond to those shown on the nomograph. For high-recovery, ball-type valves, use the liquid flow rate Q scale designated for single-ported valves. For butterfly and eccentric disk rotary valves, use the liquid flow rate Q scale designated for double-ported valves.

Nomograph Equations

1. Single-Ported Valves: $\mathrm{N}_{\mathrm{R}}=17250 \frac{\mathrm{Q}}{\sqrt{\mathrm{C}_{\mathrm{V}}} v_{\mathrm{CS}}}$
2. Double-Ported Valves: $\mathrm{N}_{\mathrm{R}}=12200 \frac{\mathrm{Q}}{\sqrt{\mathrm{C}_{\mathrm{V}}} v_{\mathrm{CS}}}$

Nomograph Procedure

1. Lay a straight edge on the liquid sizing coefficient on C_{v} scale and flow rate on Q scale. Mark intersection on index line. Procedure A uses value of C_{vc}; Procedures B and C use value of C_{vr}.
2. Pivot the straight edge from this point of intersection with index line to liquid viscosity on proper n scale. Read Reynolds number on N_{R} scale.
3. Proceed horizontally from intersection on N_{R} scale to proper curve, and then vertically upward or downward to F_{v} scale. Read C_{v} correction factor on F_{v} scale.

Valve Sizing Calculations (Traditional Method)

Predicting Flow Rate

Select the required liquid sizing coefficient $\left(\mathrm{C}_{\mathrm{vj}}\right)$ from the manufacturer's published liquid sizing coefficients $\left(\mathrm{C}_{\mathrm{v}}\right)$ for the style and size valve being considered. Calculate the maximum flow rate $\left(\mathrm{Q}_{\text {max }}\right)$ in gallons per minute (assuming no viscosity correction required) using the following adaptation of the basic liquid sizing equation:

$$
\begin{equation*}
\mathrm{Q}_{\max }=\mathrm{C}_{\mathrm{vr}} \sqrt{\Delta \mathrm{P} / \mathrm{G}} \tag{4}
\end{equation*}
$$

Then incorporate viscosity correction by determining the fluid Reynolds number and correction factor F_{v} from the viscosity correction nomograph and the procedure included on it.

Calculate the predicted flow rate $\left(\mathrm{Q}_{\text {pres }}\right)$ using the formula:

$$
\begin{equation*}
\mathrm{Q}_{\text {pred }}=\frac{\mathrm{Q}_{\max }}{\mathrm{F}_{\mathrm{V}}} \tag{5}
\end{equation*}
$$

Predicting Pressure Drop

Select the required liquid sizing coefficient $\left(\mathrm{C}_{\mathrm{vy}}\right)$ from the published liquid sizing coefficients $\left(\mathrm{C}_{\mathrm{v}}\right)$ for the valve style and size being considered. Determine the Reynolds number and correct factor F_{v} from the nomograph and the procedure on it. Calculate the sizing coefficient $\left(\mathrm{C}_{\mathrm{vc}}\right)$ using the formula:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{vC}}=\frac{\mathrm{C}_{\mathrm{vr}}}{\mathrm{~F}_{\mathrm{v}}} \tag{6}
\end{equation*}
$$

Calculate the predicted pressure drop ($\Delta \mathrm{P}_{\text {pred }}$) using the formula:

$$
\begin{equation*}
\Delta \mathrm{P}_{\text {pred }}=\mathrm{G}\left(\mathrm{Q} / \mathrm{C}_{\mathrm{vc}}\right)^{2} \tag{7}
\end{equation*}
$$

Flashing and Cavitation

The occurrence of flashing or cavitation within a valve can have a significant effect on the valve sizing procedure. These two related physical phenomena can limit flow through the valve in many applications and must be taken into account in order to accurately size a valve. Structural damage to the valve and adjacent piping may also result. Knowledge of what is actually happening within the valve might permit selection of a size or style of valve which can reduce, or compensate for, the undesirable effects of flashing or cavitation.

Figure 3. Vena Contracta

Figure 4. Comparison of Pressure Profiles for High and Low Recovery Valves

The "physical phenomena" label is used to describe flashing and cavitation because these conditions represent actual changes in the form of the fluid media. The change is from the liquid state to the vapor state and results from the increase in fluid velocity at or just downstream of the greatest flow restriction, normally the valve port. As liquid flow passes through the restriction, there is a necking down, or contraction, of the flow stream. The minimum cross-sectional area of the flow stream occurs just downstream of the actual physical restriction at a point called the vena contracta, as shown in Figure 3.

To maintain a steady flow of liquid through the valve, the velocity must be greatest at the vena contracta, where cross sectional area is the least. The increase in velocity (or kinetic energy) is accompanied by a substantial decrease in pressure (or potential energy) at the vena contracta. Farther downstream, as the fluid stream expands into a larger area, velocity decreases and pressure increases. But, of course, downstream pressure never recovers completely to equal the pressure that existed upstream of the valve. The pressure differential ($\Delta \mathrm{P}$) that exists across the valve

Valve Sizing Calculations (Traditional Method)

is a measure of the amount of energy that was dissipated in the valve. Figure 4 provides a pressure profile explaining the differing performance of a streamlined high recovery valve, such as a ball valve and a valve with lower recovery capabilities due to greater internal turbulence and dissipation of energy.

Regardless of the recovery characteristics of the valve, the pressure differential of interest pertaining to flashing and cavitation is the differential between the valve inlet and the vena contracta. If pressure at the vena contracta should drop below the vapor pressure of the fluid (due to increased fluid velocity at this point) bubbles will form in the flow stream. Formation of bubbles will increase greatly as vena contracta pressure drops further below the vapor pressure of the liquid. At this stage, there is no difference between flashing and cavitation, but the potential for structural damage to the valve definitely exists.

If pressure at the valve outlet remains below the vapor pressure of the liquid, the bubbles will remain in the downstream system and the process is said to have "flashed." Flashing can produce serious erosion damage to the valve trim parts and is characterized by a smooth, polished appearance of the eroded surface. Flashing damage is normally greatest at the point of highest velocity, which is usually at or near the seat line of the valve plug and seat ring.

However, if downstream pressure recovery is sufficient to raise the outlet pressure above the vapor pressure of the liquid, the bubbles will collapse, or implode, producing cavitation. Collapsing of the vapor bubbles releases energy and produces a noise similar to what one would expect if gravel were flowing through the valve. If the bubbles collapse in close proximity to solid surfaces, the energy released gradually wears the material leaving a rough, cylinder like surface. Cavitation damage might extend to the downstream pipeline, if that is where pressure recovery occurs and the bubbles collapse. Obviously, "high recovery" valves tend to be more subject to cavitation, since the downstream pressure is more likely to rise above the vapor pressure of the liquid.

Choked Flow

Aside from the possibility of physical equipment damage due to flashing or cavitation, formation of vapor bubbles in the liquid flow stream causes a crowding condition at the vena contracta which tends to limit flow through the valve. So, while the basic liquid sizing equation implies that there is no limit to the amount of flow through a valve as long as the differential pressure across the valve increases, the realities of flashing and cavitation prove otherwise.

Figure 6. Relationship Between Actual ΔP and $\triangle P$ Allowable

If valve pressure drop is increased slightly beyond the point where bubbles begin to form, a choked flow condition is reached. With constant upstream pressure, further increases in pressure drop (by reducing downstream pressure) will not produce increased flow The limiting pressure differential is designated $\Delta \mathrm{P}_{\text {allow }}$ and the valve recovery coefficient $\left(\mathrm{K}_{\mathrm{m}}\right)$ is experimentally determined for each valve, in order to relate choked flow for that particular valve to the basic liquid sizing equation. K_{m} is normally published with other valve capacity coefficients. Figures 5 and 6 show these flow vs. pressure drop relationships.

Technical

Valve Sizing Calculations (Traditional Method)

USE THIS CURVE FOR WATER. ENTER ON THE ABSCISSA AT THE WATER VAPOR PRESSURE AT THE VALVE INLET. PROCEED VERTICALLY TO INTERSECT THE CURVE. MOVE HORIZONTALLY TO THE LEFT TO READ THE CRITICAL PRESSURE RATIO, R_{c}, ON THE ORDINATE.

Figure 7. Critical Pressure Ratios for Water

Use the following equation to determine maximum allowable pressure drop that is effective in producing flow. Keep in mind, however, that the limitation on the sizing pressure drop, $\Delta \mathrm{P}_{\text {allow }}$, does not imply a maximum pressure drop that may be controlled y the valve.

$$
\begin{equation*}
\Delta \mathrm{P}_{\text {allow }}=\mathrm{K}_{\mathrm{m}}\left(\mathrm{P}_{1}-\mathrm{r}_{\mathrm{c}} \mathrm{P}_{\mathrm{v}}\right) \tag{8}
\end{equation*}
$$

where:
$\Delta \mathrm{P}_{\text {allow }}=$ maximum allowable differential pressure for sizing purposes, psi
$\mathrm{K}_{\mathrm{m}}=$ valve recovery coefficient from manufacturer's literature
$\mathrm{P}_{1}=$ body inlet pressure, psia
$r_{c}=$ critical pressure ratio determined from Figures 7 and 8
$P_{v}=$ vapor pressure of the liquid at body inlet temperature, psia (vapor pressures and critical pressures for many common liquids are provided in the Physical Constants of Hydrocarbons and Physical Constants of Fluids tables; refer to the Table of Contents for the page number).

After calculating $\Delta \mathrm{P}_{\text {allow }}$, substitute it into the basic liquid sizing equation $\mathrm{Q}=\mathrm{C}_{\mathrm{v}} \sqrt{\Delta \mathrm{P} / \mathrm{G}}$ to determine either Q or C_{v}. If the actual ΔP is less the $\Delta P_{\text {allow }}$, then the actual ΔP should be used in the equation.

USE THIS CURVE FOR LIQUIDS OTHER THAN WATER. DETERMINE THE VAPOR PRESSURE/CRITICAL PRESSURE RATIO BY DIVIDING THE LIQUID VAPOR PRESSURE at the valve inlet by the critical pressure of the liquid. enter on the abscissa at the RATIO JUST CALCULATED AND PROCEED VERTICALLY TO intersect the curve. move horizontally to the left and read the critical PRESSURE RATIO, R_{c}, ON THE ORDINATE.

Figure 8. Critical Pressure Ratios for Liquid Other than Water

The equation used to determine $\Delta \mathrm{P}_{\text {allow }}$ should also be used to calculate the valve body differential pressure at which significant cavitation can occur. Minor cavitation will occur at a slightly lower pressure differential than that predicted by the equation, but should produce negligible damage in most globe-style control valves.

Consequently, initial cavitation and choked flow occur nearly simultaneously in globe-style or low-recovery valves.

However, in high-recovery valves such as ball or butterfly valves, significant cavitation can occur at pressure drops below that which produces choked flow. So although $\Delta \mathrm{P}_{\text {allow }}$ and K_{m} are useful in predicting choked flow capacity, a separate cavitation index $\left(\mathrm{K}_{\mathrm{c}}\right)$ is needed to determine the pressure drop at which cavitation damage will begin $\left(\Delta \mathrm{P}_{\mathrm{c}}\right)$ in high-recovery valves.

The equation can e expressed:

$$
\begin{equation*}
\Delta \mathrm{P}_{\mathrm{C}}=\mathrm{K}_{\mathrm{C}}\left(\mathrm{P}_{1}-\mathrm{P}_{\mathrm{v}}\right) \tag{9}
\end{equation*}
$$

This equation can be used anytime outlet pressure is greater than the vapor pressure of the liquid.

Addition of anti-cavitation trim tends to increase the value of K_{m}. In other words, choked flow and incipient cavitation will occur at substantially higher pressure drops than was the case without the anti-cavitation accessory.

TECHNICAL

Valve Sizing Calculations (Traditional Method)

Liquid Sizing Equation Application		
1	EQUATION	APPLICATION
2	$Q=C_{v} \sqrt{\Delta P / G}$	Basic liquid sizing equation. Use to determine proper valve size for a given set of service conditions. (Remember that viscosity effects and valve recovery capabilities are not considered in this basic equation.)
3	$C_{v}=Q^{\frac{G}{\Delta P}}$	Use to calculate expected C_{v} for valve controlling water or other liquids that behave like water.

Liquid Sizing Summary

The most common use of the basic liquid sizing equation is to determine the proper valve size for a given set of service conditions. The first step is to calculate the required C_{v} by using the sizing equation. The $\Delta \mathrm{P}$ used in the equation must be the actual valve pressure drop or $\Delta \mathrm{P}_{\text {allow }}$, whichever is smaller. The second step is to select a valve, from the manufacturer's literature, with a C_{v} equal to or greater than the calculated value.

Accurate valve sizing for liquids requires use of the dual coefficients of C_{v} and K_{m}. A single coefficient is not sufficient to describe both the capacity and the recovery characteristics of the valve. Also, use of the additional cavitation index factor K_{c} is appropriate in sizing high recovery valves, which may develop damaging cavitation at pressure drops well below the level of the choked flow.

Liquid Sizing Nomenclature

$\mathrm{C}_{\mathrm{v}}=$ valve sizing coefficient for liquid determined experimentally for each size and style of valve, using water at standard conditions as the test fluid
$\mathrm{C}_{\mathrm{vc}}=$ calculated C_{v} coefficient including correction for viscosity
$\mathrm{C}_{\mathrm{vr}}=$ corrected sizing coefficient required for viscous applications
$\Delta \mathrm{P}=$ differential pressure, psi
$\Delta \mathrm{P}_{\text {allow }}=$ maximum allowable differential pressure for sizing purposes, psi
$\Delta \mathrm{P}_{\mathrm{c}}=$ pressure differential at which cavitation damage begins, psi
$\mathrm{F}_{\mathrm{v}}=$ viscosity correction factor
$\mathrm{G}=$ specific gravity of fluid (water at $60^{\circ} \mathrm{F}=1.0000$)
$\mathrm{K}_{\mathrm{c}}=$ dimensionless cavitation index used in determining $\Delta \mathrm{P}_{\mathrm{c}}$
$\mathrm{K}_{\mathrm{m}}=$ valve recovery coefficient from manufacturer's literature
$\mathrm{P}_{1}=$ body inlet pressure, psia
$P_{v}=$ vapor pressure of liquid at body inlet temperature, psia
$\mathrm{Q}=$ flow rate capacity, gallons per minute
$\mathrm{Q}_{\text {max }}=$ designation for maximum flow rate, assuming no viscosity correction required, gallons per minute
$\mathrm{Q}_{\text {pred }}=$ predicted flow rate after incorporating viscosity correction, gallons per minute
$\mathrm{r}_{\mathrm{c}}=$ critical pressure ratio

Valve Sizing Calculations (Traditional Method)

Sizing for Gas or Steam Service

A sizing procedure for gases can be established based on adaptions of the basic liquid sizing equation. By introducing conversion factors to change flow units from gallons per minute to cubic feet per hour and to relate specific gravity in meaningful terms of pressure, an equation can be derived for the flow of air at $60^{\circ} \mathrm{F}$. Because $60^{\circ} \mathrm{F}$ corresponds to 520° on the Rankine absolute temperature scale, and because the specific gravity of air at $60^{\circ} \mathrm{F}$ is 1.0 , an additional factor can be included to compare air at $60^{\circ} \mathrm{F}$ with specific gravity (G) and absolute temperature (T) of any other gas. The resulting equation an be written:

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{SCFH}}=59.64 \mathrm{C}_{\mathrm{V}} \mathrm{P}_{1} \sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}} \sqrt{\frac{520}{\mathrm{GT}}}} \tag{A}
\end{equation*}
$$

The equation shown above, while valid at very low pressure drop ratios, has been found to be very misleading when the ratio of pressure drop $(\Delta \mathrm{P})$ to inlet pressure $\left(\mathrm{P}_{1}\right)$ exceeds 0.02 . The deviation of actual flow capacity from the calculated flow capacity is indicated in Figure 8 and results from compressibility effects and critical flow limitations at increased pressure drops.

Critical flow limitation is the more significant of the two problems mentioned. Critical flow is a choked flow condition caused by increased gas velocity at the vena contracta. When velocity at the vena contracta reaches sonic velocity, additional increases in ΔP by reducing downstream pressure produce no increase in flow. So, after critical flow condition is reached (whether at a pressure drop/inlet pressure ratio of about 0.5 for glove valves or at much lower ratios for high recovery valves) the equation above becomes completely useless. If applied, the C_{v} equation gives a much higher indicated capacity than actually will exist. And in the case of a high recovery valve which reaches critical flow at a low pressure drop ratio (as indicated in Figure 8), the critical flow capacity of the valve may be over-estimated by as much as 300 percent.

The problems in predicting critical flow with a C -based equation led to a separate gas sizing coefficient based on air flow tests. The coefficient $\left(\mathrm{C}_{\mathrm{g}}\right)$ was developed experimentally for each type and size of valve to relate critical flow to absolute inlet pressure. By including the correction factor used in the previous equation to compare air at $60^{\circ} \mathrm{F}$ with other gases at other absolute temperatures, the critical flow equation an be written:

$$
\begin{equation*}
\mathrm{Q}_{\text {critical }}=\mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \sqrt{520 / \mathrm{GT}} \tag{B}
\end{equation*}
$$

Figure 9. Critical Flow for High and Low Recovery Valves with Equal C_{v}

Universal Gas Sizing Equation

To account for differences in flow geometry among valves, equations (A) and (B) were consolidated by the introduction of an additional factor $\left(\mathrm{C}_{1}\right) . \mathrm{C}_{1}$ is defined as the ratio of the gas sizing coefficient and the liquid sizing coefficient and provides a numerical indicator of the valve's recovery capabilities. In general, C_{1} values can range from about 16 to 37 , based on the individual valve's recovery characteristics. As shown in the example, two valves with identical flow areas and identical critical flow (C_{g}) capacities can have widely differing C_{1} values dependent on the effect internal flow geometry has on liquid flow capacity through each valve. Example:

High Recovery Valve
$C_{g}=4680$
$\mathrm{C}_{\mathrm{v}}=254$
$\mathrm{C}_{1}=\mathrm{C}_{\mathrm{g}} / \mathrm{C}_{\mathrm{v}}$
$=4680 / 254$
$=18.4$
Low Recovery Valve
$C_{g}=4680$
$C_{v}=135$
$\mathrm{C}_{1}=\mathrm{C}_{\mathrm{g}} / \mathrm{C}_{\mathrm{v}}$
$=4680 / 135$
$=34.7$

Valve Sizing Calculations (Traditional Method)

So we see that two sizing coefficients are needed to accurately size valves for gas flow- C_{g} to predict flow based on physical size or flow area, and C_{1} to account for differences in valve recovery characteristics. A blending equation, called the Universal Gas Sizing Equation, combines equations (A) and (B) by means of a sinusoidal function, and is based on the "perfect gas" laws. It can be expressed in either of the following manners:

$$
\begin{align*}
& \mathrm{Q}_{\mathrm{SCFH}}=\sqrt{\frac{520}{\mathrm{GT}}} \quad \mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \operatorname{SIN}\left[\left[\frac{59.64}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right)\right] \mathrm{rad} \tag{C}\\
& \mathrm{OR} \tag{D}\\
& \mathrm{Q}_{\mathrm{SCFH}}=\sqrt{\frac{520}{\mathrm{GT}}} \quad \mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \mathrm{SIN}\left[\left(\frac{3417}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right)\right] \mathrm{Deg}
\end{align*}
$$

In either form, the equation indicates critical flow when the sine function of the angle designated within the brackets equals unity. The pressure drop ratio at which critical flow occurs is known as the critical pressure drop ratio. It occurs when the sine angle reaches $\pi / 2$ radians in equation (C) or 90 degrees in equation (D). As pressure drop across the valve increases, the sine angle increases from zero up to $\pi / 2$ radians $\left(90^{\circ}\right)$. If the angle were allowed to increase further, the equations would predict a decrease in flow. Because this is not a realistic situation, the angle must be limited to 90 degrees maximum.

Although "perfect gases," as such, do not exist in nature, there are a great many applications where the Universal Gas Sizing Equation, (C) or (D), provides a very useful and usable approximation.

General Adaptation for Steam and Vapors

The density form of the Universal Gas Sizing Equation is the most general form and can be used for both perfect and non-perfect gas applications. Applying the equation requires knowledge of one additional condition not included in previous equations, that being the inlet gas, steam, or vapor density $\left(\mathrm{d}_{1}\right)$ in pounds per cubic foot. (Steam density can be determined from tables.)

Then the following adaptation of the Universal Gas Sizing Equation can be applied:

$$
\begin{equation*}
\left.\mathrm{Q}_{\mathrm{lb} / \mathrm{hr}}=1.06 \sqrt{\mathrm{~d}_{1} \mathrm{P}_{1}} \mathrm{C}_{\mathrm{g}} \mathrm{SIN}\left(\frac{3417}{\mathrm{C}_{1}}\right) \sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right) \mathrm{Deg} \tag{E}
\end{equation*}
$$

Special Equation Form for Steam Below 1000 psig

If steam applications do not exceed 1000 psig, density changes can be compensated for by using a special adaptation of the Universal Gas Sizing Equation. It incorporates a factor for amount of superheat in degrees Fahrenheit $\left(\mathrm{T}_{\mathrm{sh}}\right)$ and also a sizing coefficient $\left(\mathrm{C}_{\mathrm{s}}\right)$ for steam. Equation (F) eliminates the need for finding the density of superheated steam, which was required in Equation (E). At pressures below 1000 psig , a constant relationship exists between the gas sizing coefficient $\left(\mathrm{C}_{\mathrm{g}}\right)$ and the steam coefficient $\left(\mathrm{C}_{\mathrm{s}}\right)$. This relationship can be expressed: $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{g}} / 20$. For higher steam pressure application, use Equation (E).

$$
\begin{equation*}
\mathrm{Q}_{\mathrm{lb} / \mathrm{hr}}=\left[\left(\frac{\mathrm{C}_{\mathrm{S}} \mathrm{P}_{1}}{1+0.00065 \mathrm{~T}_{\mathrm{sh}}}\right]\right] \operatorname{SIN}\left[\left(\frac{3417}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right)\right] \operatorname{Deg} \tag{F}
\end{equation*}
$$

Gas and Steam Sizing Summary

The Universal Gas Sizing Equation can be used to determine the flow of gas through any style of valve. Absolute units of temperature and pressure must be used in the equation. When the critical pressure drop ratio causes the sine angle to be 90 degrees, the equation will predict the value of the critical flow. For service conditions that would result in an angle of greater than 90 degrees, the equation must be limited to 90 degrees in order to accurately determine the critical flow.

Most commonly, the Universal Gas Sizing Equation is used to determine proper valve size for a given set of service conditions. The first step is to calculate the required C_{g} by using the Universal Gas Sizing Equation. The second step is to select a valve from the manufacturer's literature. The valve selected should have a C_{g} which equals or exceeds the calculated value. Be certain that the assumed C_{1} value for the valve is selected from the literature.

It is apparent that accurate valve sizing for gases that requires use of the dual coefficient is not sufficient to describe both the capacity and the recovery characteristics of the valve.

Proper selection of a control valve for gas service is a highly technical problem with many factors to be considered. Leading valve manufacturers provide technical information, test data, sizing catalogs, nomographs, sizing slide rules, and computer or calculator programs that make valve sizing a simple and accurate procedure.

TECHNICAL

Valve Sizing Calculations (Traditional Method)

Gas and Steam Sizing Equation Application		
	EQUATION	APPLICATION
A	$\mathrm{Q}_{\mathrm{SCFH}}=59.64 \mathrm{C}_{\mathrm{v}} \mathrm{P}_{1} \sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}} \sqrt{\frac{520}{\mathrm{GT}}}$	Use only at very low pressure drop (DP/P) ratios of 0.02 or less.
B	$\mathrm{Q}_{\text {critical }}=\mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \sqrt{520 / \mathrm{GT}}$	Use only to determine critical flow capacity at a given inlet pressure.
C	$\mathrm{Q}_{\mathrm{SCFH}}=\sqrt{\frac{520}{\mathrm{GT}}} \mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \operatorname{SIN}\left[\left[\frac{59.64}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right)\right] \mathrm{rad}$ or $\mathrm{Q}_{\mathrm{SCFH}}=\sqrt{\frac{520}{\mathrm{GT}}} \quad \mathrm{C}_{\mathrm{g}} \mathrm{P}_{1} \mathrm{SIN}\left[\left(\frac{3417}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right]\right] \mathrm{Deg}$	Universal Gas Sizing Equation. Use to predict flow for either high or low recovery valves, for any gas adhering to the perfect gas laws, and under any service conditions.
E	$\mathrm{Q}_{\mathrm{lb} \text { hrr }}=1.06 \sqrt{\mathrm{~d}_{1} \mathrm{P}_{1}} \mathrm{C}_{\mathrm{g}} \operatorname{SIN}\left(\frac{3417}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right) \mathrm{Deg}$	Use to predict flow for perfect or non-perfect gas sizing applications, for any vapor including steam, at any service condition when fluid density is known.
F	$\mathrm{Q}_{\mathrm{lb} \text { hr }}=\left[\left(\frac{\mathrm{C}_{\mathrm{S}} \mathrm{P}_{1}}{1+0.00065 \mathrm{~T}_{\text {sh }}}\right)\right] \mathrm{SIN}\left[\left(\frac{3417}{\mathrm{C}_{1}}\right)\left(\sqrt{\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}}\right)\right]$ Deg	Use only to determine steam flow when inlet pressure is 1000 psig or less.

Gas and Steam Sizing Nomenclature

$C_{1}=C_{g} / C_{v}$
$\mathrm{C}_{\mathrm{g}}=$ gas sizing coefficient
$\mathrm{C}_{\mathrm{s}}=$ steam sizing coefficient, $\mathrm{C}_{\mathrm{g}} / 20$
$\mathrm{C}_{\mathrm{v}}=$ liquid sizing coefficient
$d_{1}=$ density of steam or vapor at inlet, pounds/cu. foot
$\mathrm{G}=$ gas specific gravity (air $=1.0$)
$P_{1}=$ valve inlet pressure, psia

$$
\begin{aligned}
\Delta \mathrm{P} & =\text { pressure drop across valve, psi } \\
\mathrm{Q}_{\text {critical }} & =\text { critical flow rate, } \mathrm{SCFH} \\
\mathrm{Q}_{\text {SCFH }} & =\text { gas flow rate, SCFH } \\
\mathrm{Q}_{\text {lbhr }} & =\text { steam or vapor flow rate, pounds per hour } \\
\mathrm{T} & =\text { absolute temperature of gas at inlet, degrees Rankine } \\
\mathrm{T}_{\text {sh }} & =\text { degrees of superheat, }{ }^{\circ} \mathrm{F}
\end{aligned}
$$

Valve Sizing (Standardized Method)

Introduction

Fisher ${ }^{8}$ regulators and valves have traditionally been sized using equations derived by the company. There are now standardized calculations that are becoming accepted world wide. Some product literature continues to demonstrate the traditional method, but the trend is to adopt the standardized method. Therefore, both methods are covered in this application guide.

Liquid Valve Sizing

Standardization activities for control valve sizing can be traced back to the early 1960s when a trade association, the Fluids Control Institute, published sizing equations for use with both compressible and incompressible fluids. The range of service conditions that could be accommodated accurately by these equations was quite narrow, and the standard did not achieve a high degree of acceptance. In 1967, the ISA established a committee to develop and publish standard equations. The efforts of this committee culminated in a valve sizing procedure that has achieved the status of American National Standard. Later, a committee of the International Electrotechnical Commission (IEC) used the ISA works as a basis to formulate international standards for sizing control valves. (Some information in this introductory material has been extracted from ANSI/ISA S75.01 standard with the permission of the publisher, the ISA.) Except for some slight differences in nomenclature and procedures, the ISA and IEC standards have been harmonized. ANSI/ISA Standard S75.01 is harmonized with IEC Standards 534-2-1 and 534-2-2. (IEC Publications 534-2, Sections One and Two for incompressible and compressible fluids, respectively.)

In the following sections, the nomenclature and procedures are explained, and sample problems are solved to illustrate their use.

Sizing Valves for Liquids

Following is a step-by-step procedure for the sizing of control valves for liquid flow using the IEC procedure. Each of these steps is important and must be considered during any valve sizing procedure. Steps 3 and 4 concern the determination of certain sizing factors that may or may not be required in the sizing equation depending on the service conditions of the sizing problem. If one, two, or all three of these sizing factors are to be included in the equation for a particular sizing problem, refer to the appropriate factor determination section(s) located in the text after the sixth step.

1. Specify the variables required to size the valve as follows:

- Desired design
- Process fluid (water, oil, etc.), and
- Appropriate service conditions q or $\mathrm{w}, \mathrm{P}_{1}, \mathrm{P}_{2}$, or $\Delta \mathrm{P}, \mathrm{T}_{1}, \mathrm{G}_{\mathrm{f}}, \mathrm{P}_{\mathrm{v}}$, P_{c}, and v.
The ability to recognize which terms are appropriate for a specific sizing procedure can only be acquired through experience with different valve sizing problems. If any of the above terms appears to be new or unfamiliar, refer to the Abbreviations and Terminology Table 3-1 for a complete definition.

2. Determine the equation constant, N.

N is a numerical constant contained in each of the flow equations to provide a means for using different systems of units. Values for these various constants and their applicable units are given in the Equation Constants Table 3-2.

Use N_{1}, if sizing the valve for a flow rate in volumetric units (GPM or $\mathrm{Nm}^{3} / \mathrm{h}$).

Use N_{6}, if sizing the valve for a flow rate in mass units (pound $/ \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$).
3. Determine F_{p}, the piping geometry factor.
F_{p} is a correction factor that accounts for pressure losses due to piping fittings such as reducers, elbows, or tees that might be attached directly to the inlet and outlet connections of the control valve to be sized. If such fittings are attached to the valve, the F_{p} factor must be considered in the sizing procedure. If, however, no fittings are attached to the valve, F_{p} has a value of 1.0 and simply drops out of the sizing equation.

For rotary valves with reducers (swaged installations), and other valve designs and fitting styles, determine the F_{p} factors by using the procedure for determining F_{p}, the Piping Geometry Factor, page 637.
4. Determine $q_{\text {max }}$ (the maximum flow rate at given upstream conditions) or $\Delta P_{\max }$ (the allowable sizing pressure drop).
The maximum or limiting flow rate $\left(\mathrm{q}_{\max }\right)$, commonly called choked flow, is manifested by no additional increase in flow rate with increasing pressure differential with fixed upstream conditions. In liquids, choking occurs as a result of vaporization of the liquid when the static pressure within the valve drops below the vapor pressure of the liquid.

The IEC standard requires the calculation of an allowable sizing pressure drop $\left(\Delta \mathrm{P}_{\max }\right)$, to account for the possibility of choked flow conditions within the valve. The calculated $\Delta \mathrm{P}_{\max }$ value is compared with the actual pressure drop specified in the service conditions, and the lesser of these two values is used in the sizing equation. If it is desired to use $\Delta P_{\max }$ to account for the possibility of choked flow conditions, it can be calculated using the procedure for determining $\mathrm{q}_{\max }$, the Maximum Flow Rate, or $\Delta \mathrm{P}_{\max }$, the Allowable Sizing Pressure Drop. If it can be recognized that choked flow conditions will not develop within the valve, $\Delta \mathrm{P}_{\text {max }}$ need not be calculated.
5. Solve for required C_{v}, using the appropriate equation:

- For volumetric flow rate units:

$$
\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{q}}{\mathrm{~N}_{1} \mathrm{~F}_{\mathrm{p}} \sqrt{\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{G}_{\mathrm{f}}}}}
$$

- For mass flow rate units:

$$
\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{w}}{\mathrm{~N}_{6} \mathrm{~F}_{\mathrm{p}} \sqrt{\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \gamma}}
$$

In addition to C_{v}, two other flow coefficients, K_{v} and A_{v}, are used, particularly outside of North America. The following relationships exist:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{v}}=(0.865)\left(\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{A}_{\mathrm{v}}=\left(2.40 \times 10^{-5}\right)\left(\mathrm{C}_{\mathrm{v}}\right)
\end{aligned}
$$

6. Select the valve size using the appropriate flow coefficient table and the calculated C_{v} value.

Valve Sizing (Standardized Method)

SYMBOL		SYMBOL	
C	Valve sizing coefficient	P_{1}	Upstream absolute static pressure
d	Nominal valve size	P_{2}	Downstream absolute static pressure
D	Internal diameter of the piping	P.	Absolute thermodynamic critical pressure
F_{d}	Valve style modifier, dimensionless	P_{v}	Vapor pressure absolute of liquid at inlet temperature
F_{F}	Liquid critical pressure ratio factor, dimensionless	$\Delta \mathrm{P}$	Pressure drop ($P_{1}-\mathrm{P}_{2}$) across the valve
F_{k}	Ratio of specific heats factor, dimensionless	$\Delta \mathbf{P}_{\text {max }}$ L)	Maximum allowable liquid sizing pressure drop
F_{L}	Rated liquid pressure recovery factor, dimensionless	$\Delta \mathrm{P}_{\text {max }}$ (ค)	Maximum allowable sizing pressure drop with attached fittings
$F_{\text {LP }}$	Combined liquid pressure recovery factor and piping geometry factor of valve with attached fittings (when there are no attached fittings, F_{LP} equals F_{J}), dimensionless	q	Volume rate of flow
F_{p}	Piping geometry factor, dimensionless	$\mathbf{q}_{\text {max }}$	Maximum flow rate (choked flow conditions) at given upstream conditions
G_{t}	Liquid specific gravity (ratio of density of liquid at flowing temperature to density of water at $60^{\circ} \mathrm{F}$), dimensionless	T ${ }_{1}$	Absolute upstream temperature (deg Kelvin or deg Rankine)
G_{g}	Gas specific gravity (ratio of density of flowing gas to density of air with both at standard conditions ${ }^{(1)}$, i.e., ratio of molecular weight of gas to molecular weight of air) dimensionless	w	Mass rate of flow
k	Ratio of specific heats, dimensionless	x	Ratio of pressure drop to upstream absolute static pressure ($\Delta \mathrm{P} / \mathrm{P}_{1}$), dimensionless
K	Head loss coefficient of a device, dimensionless	$\mathrm{x}_{\text {T }}$	Rated pressure drop ratio factor, dimensionless
M	Molecular weight, dimensionless	Y	Expansion factor (ratio of flow coefficient for a gas to that for a liquid at the same Reynolds number), dimensionless
N	Numerical constant	z	Compressibility factor, dimensionless
		γ^{1}	Specific weight at inlet conditions
		v	Kinematic viscosity, centistokes
1. Standard conditions are defined as $60^{\circ} \mathrm{F}$ and 14.7 psia.			

Table 3-2. Equation Constants ${ }^{(1)}$								
		N	w	q	$\mathrm{p}^{(2)}$	γ	T	d, D
	N_{1}	$\begin{gathered} \hline 0.0865 \\ 0.865 \\ 1.00 \end{gathered}$		$\mathrm{Nm}^{3} / \mathrm{h}$ $\mathrm{Nm}^{3} / \mathrm{h}$ GPM	$\begin{gathered} \hline \mathrm{kPa} \\ \mathrm{bar} \\ \text { psia } \\ \hline \end{gathered}$		$\begin{aligned} & \hline-------~ \end{aligned}$	
	N_{2}	$\begin{gathered} 0.00214 \\ 890 \\ \hline \end{gathered}$		-----	-----	-----	-----	$\begin{aligned} & \mathrm{mm} \\ & \text { inch } \end{aligned}$
	N_{5}	$\begin{gathered} 0.00241 \\ 1000 \end{gathered}$			---		----	$\begin{aligned} & \mathrm{mm} \\ & \text { inch } \end{aligned}$
	N_{6}	$\begin{array}{r} 2.73 \\ 27.3 \\ 63.3 \\ \hline \end{array}$	kg/hr kg/hr pound/hr	----	kPa bar psia			
	Normal Conditions $\mathrm{T}_{\mathrm{N}}=0^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 3.94 \\ & 394 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline \mathrm{Nm}^{3} / \mathrm{h} \\ & \mathrm{Nm}^{3} \mathrm{~h} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathrm{kPa} \\ \mathrm{bar} \\ \hline \end{gathered}$		deg Kelvin deg Kelvin	
$\mathrm{N}_{7}{ }^{(3)}$	Standard Conditions $\mathrm{T}_{\mathrm{s}}=16^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 4.17 \\ & 417 \\ & \hline \end{aligned}$		$\begin{aligned} & \begin{array}{l} \mathrm{Nm}^{3} / \mathrm{h} \\ \mathrm{Nm}^{3} \mathrm{~h} \\ \hline \end{array} \mathrm{l} \end{aligned}$	$\begin{aligned} & \mathrm{kPa} \\ & \mathrm{bar} \end{aligned}$		deg Kelvin deg Kelvin	
	Standard Conditions $\mathrm{T}_{\mathrm{s}}=60^{\circ} \mathrm{F}$	1360	----	SCFH	psia	--	deg Rankine	----
	N_{8}	$\begin{gathered} \hline 0.948 \\ 94.8 \\ 19.3 \\ \hline \end{gathered}$	\qquad		kPa bar psia		deg Kelvin deg Kelvin deg Rankine	
	Normal Conditions $\mathrm{T}_{\mathrm{N}}=0^{\circ} \mathrm{C}$	$\begin{aligned} & \hline 21.2 \\ & 2120 \\ & \hline \end{aligned}$		$\mathrm{Nm}^{3} / \mathrm{h}$ $\mathrm{Nm}^{3} / \mathrm{h}$	$\begin{aligned} & \mathrm{kPa} \\ & \mathrm{bar} \\ & \hline \end{aligned}$		deg Kelvin deg Kelvin	----
$\mathrm{N}_{9}{ }^{(3)}$	Standard Conditions $\mathrm{T}_{\mathrm{s}}=16^{\circ} \mathrm{C}$	$\begin{aligned} & 22.4 \\ & 2240 \end{aligned}$	----	$\mathrm{Nm}^{3} / \mathrm{h}$ $\mathrm{Nm}^{3} / \mathrm{h}$	$\begin{gathered} \mathrm{kPa} \\ \mathrm{bar} \end{gathered}$	----	deg Kelvin deg Kelvin	
	Standard Conditions $\mathrm{T}_{\mathrm{s}}=60^{\circ} \mathrm{F}$	7320	----	SCFH	psia	----	deg Rankine	---

1. Many of the equations used in these sizing procedures contain a numerical constant, N , along with a numerical subscript. These numerical constants provide a means for using different units in the equations. Values for the various constants and the applicable units are given in the above table. For example, if the flow rate is given in U.S. GPM and the pressures are psia, N_{1} has a value of 1.00 . If the flow rate is $\mathrm{Nm}^{3} / \mathrm{h}$ and the pressures are kPa , the N_{1} constant becomes 0.0865 .
2. All pressures are absolute.
3. Pressure base is $101.3 \mathrm{kPa}(1,01 \mathrm{bar})(14.7 \mathrm{psia})$.

Valve Sizing (Standardized Method)

Determining Piping Geometry Factor (F_{p})

Determine an F_{p} factor if any fittings such as reducers, elbows, or tees will be directly attached to the inlet and outlet connections of the control valve that is to be sized. When possible, it is recommended that F_{p} factors be determined experimentally by using the specified valve in actual tests.
Calculate the F_{p} factor using the following equation:

$$
\mathrm{F}_{\mathrm{p}}=\left[1+\frac{\sum \mathrm{K}}{\mathrm{~N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{~d}^{2}}\right)^{2}\right]^{-1 / 2}
$$

where,
$\mathrm{N}_{2}=$ Numerical constant found in the Equation Constants table
$\mathrm{d}^{2}=$ Assumed nominal valve size
$\mathrm{C}_{\mathrm{v}}=$ Valve sizing coefficient at 100% travel for the assumed valve size
In the above equation, the $\sum \mathrm{K}$ term is the algebraic sum of the velocity head loss coefficients of all of the fittings that are attached to the control valve.

$$
\sum \mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{\mathrm{B} 1}-\mathrm{K}_{\mathrm{B} 2}
$$

where,
$\mathrm{K}_{1}=$ Resistance coefficient of upstream fittings
$\mathrm{K}_{2}=$ Resistance coefficient of downstream fittings
$\mathrm{K}_{\mathrm{BI}}=$ Inlet Bernoulli coefficient
$\mathrm{K}_{\mathrm{B} 2}=$ Outlet Bernoulli coefficient
The Bernoulli coefficients, $\mathrm{K}_{\mathrm{B} 1}$ and $\mathrm{K}_{\mathrm{B} 2}$, are used only when the diameter of the piping approaching the valve is different from the diameter of the piping leaving the valve, whereby:
$\mathrm{K}_{\mathrm{B} 1}$ or $\mathrm{K}_{\mathrm{B} 2}=1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{4}$
where,
d = Nominal valve size
$\mathrm{D}=$ Internal diameter of piping
If the inlet and outlet piping are of equal size, then the Bernoulli coefficients are also equal, $\mathrm{K}_{\mathrm{BI}}=\mathrm{K}_{\mathrm{B} 2}$, and therefore they are dropped from the equation.
The most commonly used fitting in control valve installations is the short-length concentric reducer. The equations for this fitting are as follows:

- For an inlet reducer:

$$
\mathrm{K}_{1}=0.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2}
$$

- For an outlet reducer:

$$
\mathrm{K}_{2}=1.0\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2}
$$

- For a valve installed between identical reducers:

$$
\mathrm{K}_{1}+\mathrm{K}_{2}=1.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2}
$$

Determining Maximum Flow Rate $\left(q_{\text {max }}\right)$

Determine either $\mathrm{q}_{\text {max }}$ or $\Delta \mathrm{P}_{\text {max }}$ if it is possible for choked flow to develop within the control valve that is to be sized. The values can be determined by using the following procedures.

$$
\mathrm{q}_{\max }=\mathrm{N}_{1} \mathrm{~F}_{\mathrm{L}} \mathrm{C}_{\mathrm{v}} \sqrt{\frac{\mathrm{P}_{1}-\mathrm{F}_{\mathrm{F}} \mathrm{P}_{\mathrm{v}}}{\mathrm{G}_{\mathrm{f}}}}
$$

Values for F_{F}, the liquid critical pressure ratio factor, can be obtained from Figure 3-1, or from the following equation:

$$
\mathrm{F}_{\mathrm{F}}=0.96-0.28 \sqrt{\frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}_{\mathrm{C}}}}
$$

Values of F_{L}, the recovery factor for rotary valves installed without fittings attached, can be found in published coefficient tables. If the given valve is to be installed with fittings such as reducer attached to it, F_{L} in the equation must be replaced by the quotient $\mathrm{F}_{\mathrm{LP}} / \mathrm{F}_{\mathrm{P}}$, where:

$$
\mathrm{F}_{\mathrm{LP}}=\left[\frac{\mathrm{K}_{1}}{\mathrm{~N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{~d}^{2}}\right)^{2}+\frac{1}{\mathrm{~F}_{\mathrm{L}}{ }^{2}}\right]^{-1 / 2}
$$

and

$$
\mathrm{K}_{1}=\mathrm{K}_{1}+\mathrm{K}_{\mathrm{Bl}}
$$

where,

$$
\begin{aligned}
& \mathrm{K}_{1}=\text { Resistance coefficient of upstream fittings } \\
& \mathrm{K}_{\mathrm{B} 1}=\text { Inlet Bernoulli coefficient }
\end{aligned}
$$

(See the procedure for Determining F_{p}, the Piping Geometry Factor, for definitions of the other constants and coefficients used in the above equations.)

Valve Sizing (Standardized Method)

Figure 3-1. Liquid Critical Pressure Ratio Factor for Water

Determining Allowable Sizing Pressure Drop $\left(\Delta \mathbf{P}_{\max }\right)$

$\Delta \mathrm{P}_{\text {max }}$ (the allowable sizing pressure drop) can be determined from the following relationships:

For valves installed without fittings:

$$
\Delta \mathrm{P}_{\max (\mathrm{L})}=\mathrm{F}_{\mathrm{L}}^{2}\left(\mathrm{P}_{1}-\mathrm{F}_{\mathrm{F}} \mathrm{P}_{\mathrm{V}}\right)
$$

For valves installed with fittings attached:

$$
\Delta \mathrm{P}_{\max (\mathrm{LP})}=\left(\frac{\mathrm{F}_{\mathrm{LP}}}{\mathrm{~F}_{\mathrm{P}}}\right)^{2}\left(\mathrm{P}_{1}-\mathrm{F}_{\mathrm{F}} \mathrm{P}_{\mathrm{V}}\right)
$$

where,
$\mathrm{P}_{1}=$ Upstream absolute static pressure
$\mathrm{P}_{2}=$ Downstream absolute static pressure
$\mathrm{P}_{\mathrm{v}}=$ Absolute vapor pressure at inlet temperature
Values of F_{F}, the liquid critical pressure ratio factor, can be obtained from Figure 3-1 or from the following equation:

$$
\mathrm{F}_{\mathrm{F}}=0.96-0.28 \sqrt{\frac{\mathrm{P}_{\mathrm{V}}}{\mathrm{P}_{\mathrm{c}}}}
$$

An explanation of how to calculate values of F_{LP}, the recovery factor for valves installed with fittings attached, is presented in the preceding procedure Determining $\mathrm{q}_{\max }$ (the Maximum Flow Rate).
Once the $\Delta P_{\max }$ value has been obtained from the appropriate equation, it should be compared with the actual service pressure differential $\left(\Delta P=P_{1}-P_{2}\right)$. If $\Delta P_{\max }$ is less than ΔP, this is an
indication that choked flow conditions will exist under the service conditions specified. If choked flow conditions do exist ($\Delta \mathrm{P}_{\max }$ $<\mathrm{P}_{1}-\mathrm{P}_{2}$), then step 5 of the procedure for Sizing Valves for Liquids must be modified by replacing the actual service pressure differential $\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)$ in the appropriate valve sizing equation with the calculated $\Delta \mathrm{P}_{\text {max }}$ value.

Note

Once it is known that choked flow conditions will develop within the specified valve design ($\Delta P_{\text {max }}$ is calculated to be less than $\Delta \mathbf{P}$), a further distinction can be made to determine whether the choked flow is caused by cavitation or flashing. The choked flow conditions are caused by flashing if the outlet pressure of the given valve is less than the vapor pressure of the flowing liquid. The choked flow conditions are caused by cavitation if the outlet pressure of the valve is greater than the vapor pressure of the flowing liquid.

Liquid Sizing Sample Problem

Assume an installation that, at initial plant startup, will not be operating at maximum design capability. The lines are sized for the ultimate system capacity, but there is a desire to install a control valve now which is sized only for currently anticipated requirements. The line size is 8 -inch (DN 200) and an ASME CL300 globe valve with an equal percentage cage has been specified. Standard concentric reducers will be used to install the valve into the line. Determine the appropriate valve size.

Valve Sizing (Standardized Method)

USE THIS CURVE FOR LIQUIDS OTHER THAN WATER. DETERMINE THE VAPOR PRESSURE/ CRITICAL PRESSURE RATIO BY DIVIDING THE LIQUID VAPOR PRESSURE AT THE VALVE INLET BY THE CRITICAL PRESSURE OF THE LIQUID. ENTER ON THE ABSCISSA AT THE RATIO JUST CALCULATED AND PROCEED VERTICALLY TO INTERSECT THE CURVE. MOVE HORIZONTALLY TO THE LEFT AND READ THE CRITICAL PRESSURE RATIO, F_{p} ON THE ORDINATE.

Figure 3-2. Liquid Critical Pressure Ratio Factor for Liquids Other Than Water

1. Specify the necessary variables required to size the valve:

- Desired Valve Design-ASME CL300 globe valve with equal percentage cage and an assumed valve size of 3-inches.
- Process Fluid-liquid propane
- Service Conditions-q = 800 GPM (3028 1/min)
$\mathrm{P}_{1}=300 \mathrm{psig}(20,7 \mathrm{bar})=314.7 \mathrm{psia}(21,7$ bar a $)$
$\mathrm{P}_{2}=275 \mathrm{psig}(19,0 \mathrm{bar})=289.7 \mathrm{psia}(20,0$ bar a $)$
$\Delta \mathrm{P}=25 \mathrm{psi}(1,7 \mathrm{bar})$
$\mathrm{T}_{1}=70^{\circ} \mathrm{F}\left(21^{\circ} \mathrm{C}\right)$
$\mathrm{G}_{\mathrm{f}}=0.50$
$\mathrm{P}_{\mathrm{v}}=124.3 \mathrm{psia}(8,6 \mathrm{bar} \mathrm{a})$
$\mathrm{P}_{\mathrm{c}}=616.3 \mathrm{psia}(42,5$ bar a)

2. Use an N, value of 1.0 from the Equation Constants table.
3. Determine F_{p}, the piping geometry factor.

Because it is proposed to install a 3 -inch valve in an 8 -inch (DN 200) line, it will be necessary to determine the piping geometry factor, F_{p}, which corrects for losses caused by fittings attached to the valve.

$$
\mathrm{F}_{\mathrm{p}}=\left[1+\frac{\sum \mathrm{K}}{\mathrm{~N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{~d}^{2}}\right)^{2}\right]^{-1 / 2}
$$

where,
$\mathrm{N}_{2}=890$, from the Equation Constants table
d $=3$-inch (76 mm), from step 1
$\mathrm{C}_{\mathrm{v}}=121$, from the flow coefficient table for an ASME CL300,
3 -inch globe valve with equal percentage cage
To compute $\sum \mathrm{K}$ for a valve installed between identical concentric reducers:

$$
\begin{aligned}
\sum \mathrm{K} & =\mathrm{K}_{1}+\mathrm{K}_{2} \\
& =1.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2} \\
& =1.5\left(1-\frac{(3)^{2}}{(8)^{2}}\right)^{2} \\
& =1.11
\end{aligned}
$$

Valve Sizing (Standardized Method)

where,

$\mathrm{D}=8$-inch $(203 \mathrm{~mm})$, the internal diameter of the piping so,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{p}} & =\left[1+\frac{1.11}{890}\left(\frac{121}{3^{2}}\right)^{2}\right]^{-1 / 2} \\
& =0.90
\end{aligned}
$$

4. Determine $\Delta P_{\text {max }}$ (the Allowable Sizing Pressure Drop.)

Based on the small required pressure drop, the flow will not be choked ($\Delta \mathrm{P}_{\text {max }}>\Delta \mathrm{P}$).
5. Solve for C, using the appropriate equation.

$$
\begin{aligned}
C_{v} & =\frac{q}{N_{1} F_{p} \frac{\sqrt{P_{1}-P_{2}}}{G_{f}}} \\
& =\frac{800}{(1.0)(0.90) \sqrt{\frac{25}{0.5}}}
\end{aligned}
$$

$$
=125.7
$$

6. Select the valve size using the flow coefficient table and the calculated C_{v} value.

The required C_{v} of 125.7 exceeds the capacity of the assumed valve, which has a C_{v} of 121 . Although for this example it may be obvious that the next larger size (4 -inch) would be the correct valve size, this may not always be true, and a repeat of the above procedure should be carried out.

Assuming a 4-inches valve, $\mathrm{C}_{\mathrm{v}}=203$. This value was determined from the flow coefficient table for an ASME CL300, 4-inch globe valve with an equal percentage cage.

Recalculate the required C_{v} using an assumed C_{v} value of 203 in the F_{p} calculation.
where,

$$
\begin{aligned}
\sum \mathrm{K} & =\mathrm{K}_{1}+\mathrm{K}_{2} \\
& =1.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2} \\
& =1.5\left(1-\frac{16}{64}\right)^{2} \\
& =0.84
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{F}_{\mathrm{p}} & =\left[1.0+\frac{\sum \mathrm{K}}{\mathrm{~N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{~d}^{2}}\right)^{-1 / 2}\right]^{-1 / 2} \\
& =\left[1.0+\frac{0.84}{890}\left(\frac{203}{4^{2}}\right)^{-1 / 2}\right]^{-1 / 2}
\end{aligned}
$$

$$
=0.93
$$

and

$$
\begin{aligned}
C_{v} & =\frac{q}{N_{1} F_{p} \sqrt{\frac{P_{1}-P_{2}}{G_{f}}}} \\
& =\frac{800}{(1.0)(0.93) \sqrt{\frac{25}{0.5}}}
\end{aligned}
$$

$$
=121.7
$$

This solution indicates only that the 4-inch valve is large enough to satisfy the service conditions given. There may be cases, however, where a more accurate prediction of the C_{v} is required. In such cases, the required C_{v} should be redetermined using a new F_{p} value based on the C_{v} value obtained above. In this example, C_{v} is 121.7, which leads to the following result:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{p}} & =\left[1.0+\frac{\sum \mathrm{K}}{\mathrm{~N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{~d}^{2}}\right)^{2}\right]^{-1 / 2} \\
& =\left[1.0+\frac{0.84}{890}\left(\frac{121.7}{4^{2}}\right)^{2}\right]^{-1 / 2} \\
& =0.97
\end{aligned}
$$

The required C_{v} then becomes:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{v}} & =\frac{\mathrm{q}}{\mathrm{~N}_{1} \mathrm{~F}_{\mathrm{p}} \sqrt{\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{G}_{\mathrm{f}}}}} \\
& =\frac{800}{(1.0)(0.97) \sqrt{\frac{25}{0.5}}} \\
& =116.2
\end{aligned}
$$

Because this newly determined C_{v} is very close to the C_{v} used initially for this recalculation (116.2 versus 121.7), the valve sizing procedure is complete, and the conclusion is that a 4 -inch valve opened to about 75% of total travel should be adequate for the required specifications.

TECHNICAL

Valve Sizing (Standardized Method)

Gas and Steam Valve Sizing

Sizing Valves for Compressible Fluids

Following is a six-step procedure for the sizing of control valves for compressible flow using the ISA standardized procedure. Each of these steps is important and must be considered during any valve sizing procedure. Steps 3 and 4 concern the determination of certain sizing factors that may or may not be required in the sizing equation depending on the service conditions of the sizing problem. If it is necessary for one or both of these sizing factors to be included in the sizing equation for a particular sizing problem, refer to the appropriate factor determination section(s), which is referenced and located in the following text.

1. Specify the necessary variables required to size the valve as follows:

- Desired valve design (e.g. balanced globe with linear cage)
- Process fluid (air, natural gas, steam, etc.) and
- Appropriate service conditions-
q , or $\mathrm{w}, \mathrm{P}_{1}, \mathrm{P}_{2}$ or $\Delta \mathrm{P}, \mathrm{T}_{1}, \mathrm{G}_{\mathrm{g}}, \mathrm{M}, \mathrm{k}, \mathrm{Z}$, and γ_{1}
The ability to recognize which terms are appropriate for a specific sizing procedure can only be acquired through experience with different valve sizing problems. If any of the above terms appear to be new or unfamiliar, refer to the Abbreviations and Terminology Table 3-1 in Liquid Valve Sizing Section for a complete definition.

2. Determine the equation constant, N.

N is a numerical constant contained in each of the flow equations to provide a means for using different systems of units. Values for these various constants and their applicable units are given in the Equation Constants Table 3-2 in Liquid Valve Sizing Section.

Use either N_{7} or N_{9} if sizing the valve for a flow rate in volumetric units (SCFH or $\mathrm{Nm}^{3} / \mathrm{h}$). Which of the two constants to use depends upon the specified service conditions. N_{7} can be used only if the specific gravity, G_{g}, of the following gas has been specified along with the other required service conditions. N_{9} can be used only if the molecular weight, M , of the gas has been specified.
Use either N_{6} or N_{8} if sizing the valve for a flow rate in mass units (pound $/ \mathrm{hr}$ or $\mathrm{kg} / \mathrm{hr}$). Which of the two constants to use depends upon the specified service conditions. N_{6} can be used only if the specific weight, γ_{1}, of the flowing gas has been specified along with the other required service conditions. N_{8} can be used only if the molecular weight, M , of the gas has been specified.
3. Determine F_{p}, the piping geometry factor.
F_{p} is a correction factor that accounts for any pressure losses due to piping fittings such as reducers, elbows, or tees that might be attached directly to the inlet and outlet connections of the control valves to be sized. If such fittings are attached
to the valve, the F_{p} factor must be considered in the sizing procedure. If, however, no fittings are attached to the valve, F_{p} has a value of 1.0 and simply drops out of the sizing equation.

Also, for rotary valves with reducers and other valve designs and fitting styles, determine the F_{p} factors by using the procedure for Determining F_{p}, the Piping Geometry Factor, which is located in Liquid Valve Sizing Section.
4. Determine Y, the expansion factor, as follows:

$$
\mathrm{Y}=1-\frac{\mathrm{x}}{3 \mathrm{~F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}}
$$

where,
$\mathrm{F}_{\mathrm{k}}=\mathrm{k} / 1.4$, the ratio of specific heats factor
$\mathrm{k}=$ Ratio of specific heats
$\mathrm{x}=\Delta \mathrm{P} / \mathrm{P}_{1}$, the pressure drop ratio
$\mathrm{x}_{\mathrm{T}}=$ The pressure drop ratio factor for valves installed without attached fittings. More definitively, x_{T} is the pressure drop ratio required to produce critical, or maximum, flow through the valve when $F_{k}=1.0$

If the control valve to be installed has fittings such as reducers or elbows attached to it, then their effect is accounted for in the expansion factor equation by replacing the x_{T} term with a new factor x_{TP}. A procedure for determining the x_{TP} factor is described in the following section for Determining x_{Tp}, the Pressure Drop Ratio Factor.

Note

Conditions of critical pressure drop are realized when the value of x becomes equal to or exceeds the appropriate value of the product of either $\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}$ or $\mathrm{F}_{\mathrm{k}} \mathrm{X}_{\mathrm{TP}}$ at which point:

$$
y=1-\frac{x}{3 F_{k} x_{T}}=1-1 / 3=0.667
$$

Although in actual service, pressure drop ratios can, and often will, exceed the indicated critical values, this is the point where critical flow conditions develop. Thus, for a constant P_{1}, decreasing P_{2} (i.e., increasing $\Delta \mathrm{P}$) will not result in an increase in the flow rate through the valve. Values of x , therefore, greater than the product of either $\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}$ or $\mathrm{F}_{\mathrm{k}} \mathrm{X}_{\mathrm{TP}}$ must never be substituted in the expression for Y . This means that Y can never be less than 0.667. This same limit on values of x also applies to the flow equations that are introduced in the next section.
5. Solve for the required C_{v} using the appropriate equation:

For volumetric flow rate units-

- If the specific gravity, G_{g}, of the gas has been specified:

$$
C_{v}=\frac{q}{N_{7} F_{p} P_{1} Y \sqrt{\frac{X}{G_{g} T_{1} Z}}}
$$

TECHNICAL

Valve Sizing (Standardized Method)

- If the molecular weight, M , of the gas has been specified:

$$
C_{v}=\frac{q}{N_{7} F_{P} P_{1} Y \sqrt{\frac{x}{M T_{1} Z}}}
$$

For mass flow rate units-

- If the specific weight, γ_{1}, of the gas has been specified:

$$
C_{v}=\frac{W}{N_{6} F_{P} Y \sqrt{x P_{1} \gamma_{1}}}
$$

- If the molecular weight, M , of the gas has been specified:

$$
\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{w}}{\mathrm{~N}_{8} \mathrm{~F}_{\mathrm{P}} \mathrm{P}_{1} \mathrm{Y} \sqrt{\frac{\mathrm{xM}}{\mathrm{~T}_{1} Z}}}
$$

In addition to C_{v}, two other flow coefficients, K_{v} and A_{v}, are used, particularly outside of North America. The following relationships exist:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{v}}=(0.865)\left(\mathrm{C}_{\mathrm{v}}\right) \\
& \mathrm{A}_{\mathrm{v}}=\left(2.40 \times 10^{-5}\right)\left(\mathrm{C}_{\mathrm{v}}\right)
\end{aligned}
$$

6. Select the valve size using the appropriate flow coefficient table and the calculated C_{v} value.

Determining X_{Tp}, the Pressure Drop Ratio Factor

If the control valve is to be installed with attached fittings such as reducers or elbows, then their effect is accounted for in the expansion factor equation by replacing the x_{T} term with a new factor, x_{TP}.
$\mathrm{x}_{\mathrm{TP}}=\frac{\mathrm{x}_{\mathrm{T}}}{\mathrm{F}_{\mathrm{p}}^{2}}\left[1+\frac{\mathrm{x}_{\mathrm{T}} \mathrm{K}_{\mathrm{i}}}{\mathrm{N}_{5}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{d}^{2}}\right)^{2}\right]$
where,
$\mathrm{N}_{5}=$ Numerical constant found in the Equation Constants table
d = Assumed nominal valve size
$\mathrm{C}_{\mathrm{v}}=$ Valve sizing coefficient from flow coefficient table at 100% travel for the assumed valve size
$\mathrm{F}_{\mathrm{p}}=$ Piping geometry factor
$\mathrm{x}_{\mathrm{T}}=$ Pressure drop ratio for valves installed without fittings attached. x_{T} values are included in the flow coefficient tables

In the above equation, K_{i}, is the inlet head loss coefficient, which is defined as:
$\mathrm{K}_{\mathrm{i}}=\mathrm{K}_{1}+\mathrm{K}_{\mathrm{BI}}$
where,
$\mathrm{K}_{1}=$ Resistance coefficient of upstream fittings (see the procedure for Determining F_{p}, the Piping Geometry Factor, which is contained in the section for Sizing Valves for Liquids).
$\mathrm{K}_{\mathrm{B} 1}=$ Inlet Bernoulli coefficient (see the procedure for Determining F_{p}, the Piping Geometry Factor, which is contained in the section for Sizing Valves for Liquids).

Compressible Fluid Sizing Sample Problem No. 1

Determine the size and percent opening for a Fisher ${ }^{\circledR}$ Design V250 ball valve operating with the following service conditions. Assume that the valve and line size are equal.

1. Specify the necessary variables required to size the valve:

- Desired valve design-Design V250 valve
- Process fluid-Natural gas
- Service conditions-

$$
\begin{aligned}
\mathrm{P}_{1} & =200 \mathrm{psig}(13,8 \mathrm{bar})=214.7 \mathrm{psia}(14,8 \mathrm{bar}) \\
\mathrm{P}_{2} & =50 \mathrm{psig}(3,4 \mathrm{bar})=64.7 \mathrm{psia}(4,5 \mathrm{bar}) \\
\Delta \mathrm{P} & =150 \mathrm{psi}(10,3 \mathrm{bar}) \\
\mathrm{x} & =\Delta \mathrm{P} / \mathrm{P}_{1}=150 / 214.7=0.70 \\
\mathrm{~T}_{1} & =60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)=520^{\circ} \mathrm{R} \\
\mathrm{M} & =17.38 \\
\mathrm{G}_{\mathrm{g}} & =0.60 \\
\mathrm{k} & =1.31 \\
\mathrm{q} & =6.0 \times 10^{6} \text { SCFH }
\end{aligned}
$$

2. Determine the appropriate equation constant, N, from the Equation Constants Table 3-2 in Liquid Valve Sizing Section.
Because both G_{g} and M have been given in the service conditions, it is possible to use an equation containing either N_{7} or N_{9}. In either case, the end result will be the same. Assume that the equation containing G_{g} has been arbitrarily selected for this problem. Therefore, $\mathrm{N}_{7}=1360$.
3. Determine F_{p}, the piping geometry factor.

Since valve and line size are assumed equal, $\mathrm{F}_{\mathrm{p}}=1.0$.
4. Determine Y, the expansion factor.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{k}} & =\frac{\mathrm{k}}{1.40} \\
& =\frac{1.31}{1.40} \\
& =0.94
\end{aligned}
$$

It is assumed that an 8 -inch Design V250 valve will be adequate for the specified service conditions. From the flow coefficient Table 4-2, x_{T} for an 8 -inch Design V250 valve at 100% travel is 0.137 .
$x=0.70$ (This was calculated in step 1.)

Technical

Valve Sizing (Standardized Method)

Since conditions of critical pressure drop are realized when the calculated value of x becomes equal to or exceeds the appropriate value of $\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}$, these values should be compared.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{k}} \mathrm{X}_{\mathrm{T}} & =(0.94)(0.137) \\
& =0.129
\end{aligned}
$$

Because the pressure drop ratio, $\mathrm{x}=0.70$ exceeds the calculated critical value, $\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}=0.129$, choked flow conditions are indicated. Therefore, $\mathrm{Y}=0.667$, and $\mathrm{x}=\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}=0.129$.
5. Solve for required C_{v} using the appropriate equation.

$$
C_{v}=\frac{q}{N_{7} F_{P} P_{1} Y \sqrt{\frac{x}{G_{g} T_{1} Z}}}
$$

The compressibility factor, Z , can be assumed to be 1.0 for the gas pressure and temperature given and $\mathrm{F}_{\mathrm{p}}=1$ because valve size and line size are equal.

So,

$$
\mathrm{C}_{\mathrm{v}}=\frac{6.0 \times 10^{6}}{(1360)(1.0)(214.7)(0.667) \sqrt{\frac{0.129}{(0.6)(520)(1.0)}}}=1515
$$

6. Select the valve size using the flow coefficient table and the calculated C_{v} value.
The above result indicates that the valve is adequately sized (rated $\mathrm{C}_{\mathrm{v}}=2190$). To determine the percent valve opening, note that the required C_{v} occurs at approximately 83 degrees for the 8 -inch Design V250 valve. Note also that, at 83 degrees opening, the x_{T} value is 0.252 , which is substantially different from the rated value of 0.137 used initially in the problem. The next step is to rework the problem using the x_{T} value for 83 degrees travel.

The $\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}}$ product must now be recalculated.

$$
\begin{aligned}
\mathrm{x} & =\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}} \\
& =(0.94)(0.252) \\
& =0.237
\end{aligned}
$$

The required C_{v} now becomes:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{v}} & =\frac{\mathrm{q}}{\mathrm{~N}_{7} \mathrm{~F}_{\mathrm{p}} \mathrm{P}_{1} \mathrm{Y} \sqrt{\frac{\mathrm{X}}{\mathrm{G}_{\mathrm{g}} \mathrm{~T}_{1} Z}}} \\
& =\frac{6.0 \times 10^{6}}{(1360)(1.0)(214.7)(0.667) \sqrt{\frac{0.237}{(0.6)(520)(1.0)}}} \\
& =1118
\end{aligned}
$$

The reason that the required C_{v} has dropped so dramatically is attributable solely to the difference in the x_{T} values at rated and 83 degrees travel. AC_{v} of 1118 occurs between 75 and 80 degrees travel.

The appropriate flow coefficient table indicates that X_{T} is higher at 75 degrees travel than at 80 degrees travel. Therefore, if the problem were to be reworked using a higher x_{T} value, this should result in a further decline in the calculated required C_{v}.
Reworking the problem using the x_{T} value corresponding to 78 degrees travel (i.e., $\mathrm{x}_{\mathrm{T}}=0.328$) leaves:

$$
\begin{aligned}
\mathrm{x} & =\mathrm{F}_{\mathrm{k}} \mathrm{x}_{\mathrm{T}} \\
& =(0.94)(0.328) \\
& =0.308
\end{aligned}
$$

and,

$$
\begin{aligned}
C_{v} & =\frac{q}{N_{7} F_{p} P_{1} Y \sqrt{\frac{x}{G_{g} T_{1} Z}}} \\
& =\frac{6.0 \times 10^{6}}{(1360)(1.0)(214.7)(0.667) \sqrt{\frac{0.308}{(0.6)(520)(1.0)}}} \\
& =980
\end{aligned}
$$

The above C_{v} of 980 is quite close to the 75 degree travel C_{v}. The problem could be reworked further to obtain a more precise predicted opening; however, for the service conditions given, an 8 -inch Design V250 valve installed in an 8 -inch (203 mm) line will be approximately 75 degrees open.

Compressible Fluid Sizing Sample Problem No. 2

Assume steam is to be supplied to a process designed to operate at 250 psig (17 bar). The supply source is a header maintained at $500 \mathrm{psig}(34,5 \mathrm{bar})$ and $500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$. A 6 -inch (DN 150) line from the steam main to the process is being planned. Also, make the assumption that if the required valve size is less than 6 -inch (DN 150), it will be installed using concentric reducers. Determine the appropriate Design ED valve with a linear cage.

1. Specify the necessary variables required to size the valve:
a. Desired valve design-ASME CL300 Design ED valve with a linear cage. Assume valve size is 4 inches.
b. Process fluid-superheated steam
c. Service conditions-
$\mathrm{w}=125000$ pounds $/ \mathrm{hr}(56700 \mathrm{~kg} / \mathrm{hr})$
$\mathrm{P}_{1}=500 \mathrm{psig}(34,5 \mathrm{bar})=514.7 \mathrm{psia}(35,5 \mathrm{bar})$
$\mathrm{P}_{2}=250 \mathrm{psig}(17 \mathrm{bar})=264.7 \mathrm{psia}(18,3 \mathrm{bar})$
$\mathrm{P}=250 \mathrm{psi}(17 \mathrm{bar})$
$\mathrm{x}=\Delta \mathrm{P} / \mathrm{P}_{1}=250 / 514.7=0.49$
$\mathrm{T}_{1}=500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$
$\gamma_{1}=1.0434$ pound $/ \mathrm{ft}^{3}\left(16,71 \mathrm{~kg} / \mathrm{m}^{3}\right)$
(from Properties of Saturated Steam Table)
$\mathrm{k}=1.28$ (from Properties of Saturated Steam Table)

TECHNICAL

Valve Sizing (Standardized Method)

2. Determine the appropriate equation constant, N, from the Equation Constants Table 3-2 in Liquid Valve Sizing Section.

Because the specified flow rate is in mass units, (pound/hr), and the specific weight of the steam is also specified, the only sizing equation that can be used is that which contains the N_{6} constant. Therefore,
$\mathrm{N}_{6}=63.3$
3. Determine F_{p}, the piping geometry factor.
$\mathrm{F}_{\mathrm{p}}=\left[1+\frac{\Sigma \mathrm{K}}{\mathrm{N}_{2}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{d}^{2}}\right)^{2}\right]^{-1 / 2}$
where,
$\mathrm{N}_{2}=890$, determined from the Equation Constants Table
$\mathrm{d}=4$ inches
$\mathrm{C}_{\mathrm{v}}=236$, which is the value listed in the flow coefficient Table 4-3 for a 4-inch Design ED valve at 100% total travel.
$\Sigma \mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}$

$$
\begin{aligned}
& =1.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2} \\
& =1.5\left(1-\frac{4^{2}}{6^{2}}\right)^{2} \\
& =0.463
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{p}} & =\left[1+\frac{0.463}{890}\left(\frac{(1.0)(236)}{(4)^{2}}\right)^{2}\right]^{-1 / 2} \\
& =0.95
\end{aligned}
$$

4. Determine Y, the expansion factor.
$\mathrm{Y}=1-\frac{\mathrm{x}}{3 \mathrm{~F}_{\mathrm{k}} \mathrm{X}_{\mathrm{TP}}}$
where,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{k}} & =\frac{\mathrm{k}}{1.40} \\
& =\frac{1.28}{1.40} \\
& =0.91 \\
\mathrm{x} & =0.49 \text { (As calculated in step } 1 .)
\end{aligned}
$$

Because the 4-inch valve is to be installed in a 6-inch line, the x_{T} term must be replaced by x_{TP}.
$\mathrm{x}_{\mathrm{TP}}=\frac{\mathrm{x}_{\mathrm{T}}}{\mathrm{F}_{\mathrm{p}}{ }^{2}}\left[1+\frac{\mathrm{x}_{\mathrm{T}} \mathrm{K}_{\mathrm{i}}}{\mathrm{N}_{5}}\left(\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{d}^{2}}\right)^{2}\right]^{-1}$
where,

$$
\mathrm{N}_{5}=1000, \text { from the Equation Constants Table }
$$

$\mathrm{d}=4$ inches
$\mathrm{F}_{\mathrm{p}}=0.95$, determined in step 3
$\mathrm{x}_{\mathrm{T}}=0.688$, a value determined from the appropriate listing in the flow coefficient table

$$
C_{v}=236, \text { from step } 3
$$

and

$$
\begin{aligned}
\mathrm{K}_{\mathrm{i}} & =\mathrm{K}_{1}+\mathrm{K}_{\mathrm{B} 1} \\
& =0.5\left(1-\frac{\mathrm{d}^{2}}{\mathrm{D}^{2}}\right)^{2}+\left[1-\left(\frac{\mathrm{d}}{\mathrm{D}}\right)^{4}\right] \\
& =0.5\left(1-\frac{4^{2}}{6^{2}}\right)^{2}+\left[1-\left(\frac{4}{6}\right)^{4}\right] \\
& =0.96
\end{aligned}
$$

where $\mathrm{D}=6$-inch
so

$$
\mathrm{x}_{\mathrm{TP}}=\frac{0.69}{0.95^{2}}\left[1+\frac{(0.69)(0.96)}{1000}\left(\frac{236}{4^{2}}\right)^{2}\right]^{-1}=0.67
$$

Finally:

$$
\begin{aligned}
Y & =1-\frac{\mathrm{x}}{3 \mathrm{~F}_{\mathrm{k}} \mathrm{x}_{\mathrm{TP}}} \\
& =1-\frac{0.49}{(3)(0.91)(0.67)} \\
& =0.73
\end{aligned}
$$

5. Solve for required C_{v} using the appropriate equation.

$$
\begin{aligned}
C_{v} & =\frac{w}{N_{6} F_{p} Y \sqrt{x P_{1} \gamma_{1}}} \\
& =\frac{125,000}{(63.3)(0.95)(0.73) \sqrt{(0.49)(514.7)(1.0434)}} \\
& =176
\end{aligned}
$$

Valve Sizing (Standardized Method)

BODY SIZE, INCHES (DN)	LINEAR CAGE						
	Line Size Equals Body Size		2:1 Line Size to Body Size		$\mathrm{X}_{\text {T }}$	F_{D}	F_{L}
	C		C				
	Regulating	Wide-Open	Regulating	Wide-Open			
1 (25)	16.8	17.7	17.2	18.1	0.806	0.43	0.84
2 (50)	63.3	66.7	59.6	62.8	0.820	0.35	
3 (80)	132	139	128	135	0.779	0.30	
4 (100)	202	213	198	209	0.829	0.28	
6 (150)	397	418	381	404	0.668	0.28	
BODY SIZE, INCHES (DN)	WHISPER TRIM ${ }^{\text {TM }}$ CAGE						
	Line Size Equals Body Size Piping		2:1 Line Size to Body Size Piping		$\mathrm{X}_{\text {T }}$	F_{D}	F_{L}
	C		C				
	Regulating	Wide-Open	Regulating	Wide-Open			
1 (25)	16.7	17.6	15.6	16.4	0.753	0.10	0.89
2 (50)	54	57	52	55	0.820	0.07	
3 (80)	107	113	106	110	0.775	0.05	
4 (100)	180	190	171	180	0.766	0.04	
6 (150)	295	310	291	306	0.648	0.03	

VALVE SIZE, INCHES	VALVE STYLE	DEGREES OF VALVE OPENING	C	F_{L}	$\mathrm{X}_{\text {T }}$	F_{D}
1	V-Notch Ball Valve	$\begin{aligned} & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.6 \\ & 34.0 \end{aligned}$	$\begin{aligned} & \hline 0.86 \\ & 0.86 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.53 \\ & 0.42 \\ & \hline \end{aligned}$	------
1-1/2	V-Notch Ball Valve	$\begin{aligned} & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.5 \\ & 77.3 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.74 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.27 \\ & \hline \end{aligned}$	---
2	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 59.2 \\ & 132 \\ & 58.9 \\ & 80.2 \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & 0.77 \\ & 0.76 \\ & 0.71 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.41 \\ & 0.50 \\ & 0.44 \\ & \hline \end{aligned}$	$\begin{gathered} ---- \\ \hline 0 . \\ 0.49 \\ 0.70 \\ \hline \end{gathered}$
3	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 120 \\ & 321 \\ & 115 \\ & 237 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.74 \\ & 0.81 \\ & 0.64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.50 \\ & 0.30 \\ & 0.46 \\ & 0.28 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.99 \\ & 0.49 \\ & 0.70 \\ & \hline \end{aligned}$
4	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & \hline 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 195 \\ & 596 \\ & 270 \\ & 499 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.62 \\ & 0.69 \\ & 0.53 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.52 \\ & 0.22 \\ & 0.32 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.99 \\ & 0.49 \\ & 0.70 \end{aligned}$
6	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 340 \\ 1100 \\ 664 \\ 1260 \end{gathered}$	$\begin{aligned} & \hline 0.80 \\ & 0.58 \\ & 0.66 \\ & 0.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.20 \\ & 0.33 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.99 \\ & 0.49 \\ & 0.70 \end{aligned}$
8	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & 60 \\ & 90 \\ & 60 \\ & 90 \end{aligned}$	$\begin{aligned} & \hline 518 \\ & 1820 \\ & 1160 \\ & 2180 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & 0.54 \\ & 0.66 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.54 \\ & 0.18 \\ & 0.31 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.91 \\ & 0.99 \\ & 0.49 \\ & 0.70 \end{aligned}$
10	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1000 \\ & 3000 \\ & 1670 \\ & 3600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.56 \\ & 0.66 \\ & 0.48 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.47 \\ & 0.19 \\ & 0.38 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.91 \\ & 0.99 \\ & 0.49 \\ & 0.70 \\ & \hline \end{aligned}$
12	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & \hline 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1530 \\ & 3980 \\ & 2500 \\ & 5400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.78 \\ & 0.63 \\ & ----- \end{aligned}$	$\begin{aligned} & \hline 0.49 \\ & 0.25 \\ & ----- \end{aligned}$	$\begin{aligned} & \hline 0.92 \\ & 0.99 \\ & 0.49 \\ & 0.70 \end{aligned}$
16	V-Notch Ball Valve High Performance Butterfly Valve	$\begin{aligned} & \hline 60 \\ & 90 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\begin{aligned} & 2380 \\ & 8270 \\ & 3870 \\ & 8600 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.80 \\ & 0.37 \\ & 0.69 \\ & 0.52 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.45 \\ & 0.13 \\ & 0.40 \\ & 0.23 \end{aligned}$	0.92 1.00 ---

Valve Sizing (Standardized Method)

VALVE SIZE, INCHES	VALVE PLUG STYLE	FLOW CHARACTERISTICS	PORT DIAMETER, INCHES (mm)	RATED TRAVEL, INCHES (mm)	C ${ }^{\text {v }}$	F_{L}	X_{T}	F_{D}
1/2	Post Guided	Equal Percentage	0.38 (9,7)	0.50 (12,7)	2.41	0.90	0.54	0.61
3/4	Post Guided	Equal Percentage	0.56 (14,2)	0.50 (12,7)	5.92	0.84	0.61	0.61
1	Micro-Form ${ }^{\text {TM }}$	Equal Percentage	3/8 (9,5)	3/4 (19,1)	3.07	0.89	0.66	0.72
			1/2 (12,7)	$3 / 4(19,1)$	4.91	0.93	0.80	0.67
	Cage Guided		$3 / 4(19,1)$	$3 / 4(19,1)$	8.84	0.97	0.92	0.62
		Linear	1-5/16 (33,3)	$3 / 4(19,1)$	20.6	0.84	0.64	0.34
		Equal Percentage	1-5/16 (33,3)	$3 / 4(19,1)$	17.2	0.88	0.67	0.38
1-1/2	Micro-Form ${ }^{\text {TM }}$	Equal Percentage	$3 / 8$ (9,5)	3/4 (19,1)	3.20	0.84	0.65	0.72
			1/2 $(12,7)$	$3 / 4(19,1)$	5.18	0.91	0.71	0.67
	Cage Guided	Linear Equal Percentage	$3 / 4(19,1)$	$3 / 4(19,1)$	10.2	0.92	0.80	0.62
			1-7/8 (47,6)	$3 / 4(19,1)$	39.2	0.82	0.66	0.34
			1-7/8 (47,6)	$3 / 4(19,1)$	35.8	0.84	0.68	0.38
2	Cage Guided	Linear Equal Percentage	$\begin{array}{ll} \hline 2-5 / 16 & (58,7) \\ 2-5 / 16 & (58,7) \end{array}$	$\begin{array}{ll} \hline 1-1 / 8 & (28,6) \\ 1-1 / 8 & (28,6) \end{array}$	$\begin{aligned} & \hline 72.9 \\ & 59.7 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \hline 0.64 \\ & 0.69 \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & 0.31 \end{aligned}$
3	Cage Guided	Linear Equal Percentage	3-7/16 (87,3)	1-1/2 $(38,1)$	$\begin{aligned} & 148 \\ & 136 \end{aligned}$	$\begin{aligned} & \hline 0.82 \\ & 0.82 \end{aligned}$	$\begin{aligned} & \hline 0.62 \\ & 0.68 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.32 \end{aligned}$
4	Cage Guided	Linear Equal Percentage	$4-3 / 8(111)$ ----	$2(50,8)$	$\begin{aligned} & 236 \\ & 224 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.82 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.72 \end{aligned}$	$\begin{aligned} & \hline 0.28 \\ & 0.28 \end{aligned}$
6	Cage Guided	Linear Equal Percentage	7 (178)	$2(50,8)$	$\begin{aligned} & 433 \\ & 394 \end{aligned}$	$\begin{aligned} & 0.84 \\ & 0.85 \end{aligned}$	$\begin{aligned} & \hline 0.74 \\ & 0.78 \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.26 \end{aligned}$
8	Cage Guided	Linear Equal Percentage	8 (203)	$3(76,2)$	$\begin{aligned} & \hline 846 \\ & 818 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 0.86 \end{aligned}$	$\begin{aligned} & 0.81 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.26 \end{aligned}$

6. Select the valve size using flow coefficient tables and the calculated C_{v} value.

Refer to the flow coefficient Table 4-3 for Design ED valves with linear cage. Because the assumed 4-inch valve has a C_{v} of 236 at 100% travel and the next smaller size (3-inch) has a C_{v} of only 148 , it can be surmised that the assumed size is correct. In the event that the calculated required C_{v} had been small enough to have been handled by the next smaller size, or if it had been larger than the rated C_{v} for the assumed size, it would have been necessary to rework the problem again using values for the new assumed size.
7. Sizing equations for compressible fluids.

The equations listed below identify the relationships between flow rates, flow coefficients, related installation factors, and pertinent service conditions for control valves handling compressible fluids. Flow rates for compressible fluids may be encountered in either mass or volume units and thus equations are necessary to handle both situations. Flow coefficients may be calculated using the appropriate equations selected from the following. A sizing flow chart for compressible fluids is given in Annex B.

The flow rate of a compressible fluid varies as a function of the ratio of the pressure differential to the absolute inlet pressure $\left(\Delta P / P_{1}\right)$, designated by the symbol x. At values of x near zero, the equations in this section can be traced to the basic Bernoulli equation for Newtonian incompressible fluids. However, increasing values of x result in expansion and compressibility effects that require the use of appropriate factors (see Buresh, Schuder, and Driskell references).

7.1 Turbulent flow

7.1.1 Non-choked turbulent flow
7.1.1.1 Non-choked turbulent flow without attached fittings
[Applicable if $x<F_{\gamma} x_{\mathrm{T}}$]
The flow coefficient shall be calculated using one of the following equations:

Eq. 6

$$
C=\frac{W}{N_{6} Y \sqrt{x P_{1} \rho_{1}}}
$$

Eq. 7

$$
C=\frac{W}{N_{8} P_{1} Y} \sqrt{\frac{T_{1} Z}{x M}}
$$

Eq. 8a

$$
C=\frac{Q}{N_{9} P_{1} Y} \sqrt{\frac{M T_{1} Z}{x}}
$$

Eq. 8 b

$$
C=\frac{Q}{N_{7} P_{1} Y} \sqrt{\frac{G_{g} T_{1} Z}{x}}
$$

NOTE 1 Refer to 8.5 for details of the expansion factor Y.
NOTE 2 See Annex C for values of M.
7.1.1.2 Non-choked turbulent flow with attached fittings
[Applicable if $x<F_{\gamma} x_{\mathrm{TP}}$]

Technical

Cold Temperature Considerations

Regulators Rated for Low Temperatures

In some areas of the world, regulators periodically operate in temperatures below $-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$. These cold temperatures require special construction materials to prevent regulator failure. Emerson Process Management offers regulator constructions that are RATED for use in service temperatures below $-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$.

Selection Criteria

When selecting a regulator for extreme cold temperature service, the following guidelines should be considered:

- The body material should be 300 Series stainless steel, LCC, or LCB due to low carbon content in the material makeup.
- Give attention to the bolts used. Generally, special stainless steel bolting is required.
- Gaskets and O-rings may need to be addressed if providing a seal between two parts exposed to the cold.
- Special springs may be required in order to prevent fracture when exposed to extreme cold.
- Soft parts in the regulator that are also being used as a seal gasket between two metal parts (such as a diaphragm) may need special consideration. Alternate diaphragm materials should be used to prevent leakage caused by hardening and stiffening of the standard materials.

Freezing

Introduction

Freezing has been a problem since the birth of the gas industry. This problem will likely continue, but there are ways to minimize the effects of the phenomenon.

There are two areas of freezing. The first is the formation of ice from water travelling within the gas stream. Ice will form when temperatures drop below $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$.

The second is hydrate formation. Hydrate is a frozen mixture of water and hydrocarbons. This bonding of water around the hydrocarbon molecule forms a compound which can freeze above $32^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right)$. Hydrates can be found in pipelines that are saturated with water vapor. It is also common to have hydrate formation in natural gas of high BTU content. Hydrate formation is dependent upon operating conditions and gas composition.

Reducing Freezing Problems

To minimize problems, we have several options.

1. Keep the fluid temperature above the freezing point by applying heat.
2. Feed an antifreeze solution into the flow stream.
3. Select equipment that is designed to be ice-free in the regions where there are moving parts.
4. Design systems that minimize freezing effects.
5. Remove the water from the flow stream.

Heat the Gas

Obviously, warm water does not freeze. What we need to know is when is it necessary to provide additional heat.

Gas temperature is reduced whenever pressure is reduced. This temperature drop is about $1^{\circ} \mathrm{F}\left(-17^{\circ} \mathrm{C}\right)$ for each $15 \mathrm{psi}(1,03 \mathrm{bar})$ pressure drop. Potential problems can be identified by calculating the temperature drop and subtracting from the initial temperature. Usually ground temperature, about $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$ is the initial temperature. If a pressure reducing station dropped the pressure from 400 to 250 psi (28 to 17 bar) and the initial temperature is $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$, the final temperature would be $40^{\circ} \mathrm{F}\left(4^{\circ} \mathrm{C}\right)$.

$$
\begin{gathered}
50^{\circ} \mathrm{F}-(400 \text { to } 250 \mathrm{psi})\left(1^{\circ} \mathrm{F} / 15 \mathrm{psi}\right)=40^{\circ} \mathrm{F} \\
\left(10^{\circ} \mathrm{C}-(28 \text { to } 17 \mathrm{bar})\left(-17^{\circ} \mathrm{C} / 1,03 \mathrm{bar}\right)=5^{\circ} \mathrm{C}\right)
\end{gathered}
$$

In this case, a freezing problem is not expected. However, if the final pressure was $25 \mathrm{psi}(1,7 \mathrm{bar})$ instead of $250 \mathrm{psi}(17 \mathrm{bar})$, the final temperature would be $25^{\circ} \mathrm{F}\left(-4^{\circ} \mathrm{C}\right)$. We should expect freezing in this example if there is any moisture in the gas stream.

We can heat the entire gas stream with line heaters where the situation warrants. However, this does involve some large equipment and considerable fuel requirements.

Many different types of large heaters are on the market today. Some involve boilers that heat a water/glycol solution which is circulated through a heat exchanger in the main gas line. Two important considerations are: (1) fuel efficiencies, and (2) noise generation.

In many cases, it is more practical to build a box around the pressure reducing regulator and install a small catalytic heater to warm the regulator. When pilot-operated regulators are used, we may find that the ice passes through the regulator without difficulty but plugs the small ports in the pilot. A small heater can be used to heat the pilot supply gas or the pilot itself. A word of caution is appropriate. When a heater remains in use when it is not needed, it can overheat the rubber parts of the regulator. They are usually designed for $180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$ maximum. Using an automatic temperature control thermostat can prevent overheating.

Antifreeze Solution

An antifreeze solution can be introduced into the flow stream where it will combine with the water. The mixture can pass through the pressure reducing station without freezing. The antifreeze is dripped into the pipeline from a pressurized reservoir through a needle valve. This system is quite effective if one remembers to replenish the reservoir. There is a system that allows the antifreeze to enter the pipeline only when needed. We can install a small pressure regulator between the reservoir and the pipeline with the control line of the small regulator connected downstream of the pressure reducing regulator in the pipeline. The small regulator is set at a lower pressure than the regulator in the pipeline. When the controlled pressure is normal, the small regulator remains closed and conserves the antifreeze. When ice begins to block the regulator in the pipeline, downstream pressure will fall below the setpoint of the small regulator which causes it to open, admitting antifreeze into the pipeline as it is needed. When the ice is removed, the downstream pressure returns to normal and the small regulator closes until ice begins to re-form. This system is quite reliable as long as the supply of the antifreeze solution is maintained. It is usually used at low volume pressure reducing stations.

Equipment Selection

We can select equipment that is somewhat tolerant of freezing if we know how ice forms in a pressure reducing regulator. Since the pressure drop occurs at the orifice, this is the spot where we might expect the ice formation. However, this is not necessarily the case. Metal regulator bodies are good heat conductors. As a result, the body, not just the port, is cooled by the pressure drop. The moisture in the incoming gas strikes the cooled surface as it enters the body and freezes to the body wall before it reaches the orifice. If the valve plug is located upstream of the orifice, there is a good chance that it will become trapped in the ice and remain in the last position. This ice often contains worm holes which allow

TECHNICAL

Freezing

gas to continue to flow. In this case, the regulator will be unable to control downstream pressure when the flow requirement changes. If the valve plug is located downstream of the port, it is operating in an area that is frequently ice-free. It must be recognized that any regulator can be disabled by ice if there is sufficient moisture in the flow stream.

System Design

We can arrange station piping to reduce freezing if we know when to expect freezing. Many have noted that there are few reported instances of freezing when the weather is very cold $\left(0^{\circ} \mathrm{F}\right.$ $\left.\left(-18^{\circ} \mathrm{C}\right)\right)$. They have observed that most freezing occurs when the atmospheric temperature is between 35° and $45^{\circ} \mathrm{F}\left(2^{\circ}\right.$ and $\left.7^{\circ} \mathrm{C}\right)$. When the atmospheric temperature is quite low, the moisture within the gas stream freezes to the pipe wall before it reaches the pressure reducing valve which leaves only dry gas to pass through the valve. We can take advantage of this concept by increasing the amount of piping that is exposed above ground upstream of the pressure reducing valve. This will assure ample opportunity for the moisture to contact the pipe wall and freeze to the wall.

When the atmospheric temperature rises enough to melt the ice from the pipe wall, it is found that the operating conditions are not favorable to ice formation in the pressure reducing valve. There may be sufficient solar heat gain to warm the regulator body or lower flow rates which reduces the refrigeration effect of the pressure drop.

Parallel pressure reducing valves make a practical antifreeze system for low flow stations such as farm taps. The two parallel regulators are set at slightly different pressures (maybe one at 50 psi (3 bar) and one at $60 \mathrm{psi}(4 \mathrm{bar})$). The flow will automatically go through the regulator with the higher setpoint. When this regulator freezes closed, the pressure will drop and the second regulator will open and carry the load. Since most freezing instances occur when the atmospheric temperature is between 35° and $45^{\circ} \mathrm{F}\left(2^{\circ}\right.$ and $\left.7^{\circ} \mathrm{C}\right)$, we expect the ice in the first regulator to begin thawing as soon as the flow stops. When the ice melts from the first regulator, it will resume flowing gas. These two regulators will continue to alternate between flowing and freezing until the atmospheric temperature decreases or increases, which will get the equipment out of the ice formation temperature range.

Water Removal

Removing the moisture from the flow stream solves the problem of freezing. However, this can be a difficult task. Where moisture is a significant problem, it may be beneficial to use a method of dehydration. Dehydration is a process that removes the water from the gas stream. Effective dehydration removes enough water to prevent reaching the dew point at the lowest temperature and highest pressure.

Two common methods of dehydration involve glycol absorption and desiccants. The glycol absorption process requires the gas stream to pass through glycol inside a contactor. Water vapor is absorbed by the glycol which in turn is passed through a regenerator that removes the water by distillation. The glycol is reused after being stripped of the water. The glycol system is continuous and fairly low in cost. It is important, however, that glycol is not pushed downstream with the dried gas.

The second method, solid absorption or desiccant, has the ability to produce much drier gas than glycol absorption. The solid process has the gas stream passing through a tower filled with desiccant. The water vapor clings to the desiccant, until it reaches saturation. Regeneration of the desiccant is done by passing hot gas through the tower to dry the absorption medium. After cooling, the system is ready to perform again. This is more of a batch process and will require two or more towers to keep a continuous flow of dry gas. The desiccant system is more expensive to install and operate than the glycol units.

Most pipeline gas does not have water content high enough to require these measures. Sometimes a desiccant dryer installed in the pilot gas supply lines of a pilot-operated regulator is quite effective. This is primarily true where water is present on an occasional basis.

Summary

It is ideal to design a pressure reducing station that will never freeze, but anyone who has spent time working on this problem will acknowledge that no system is foolproof. We can design systems that minimize the freezing potential by being aware of the conditions that favor freezing.

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

The Details

NACE MR0175, "Sulfide Stress Corrosion Cracking Resistant Metallic Materials for Oil Field Equipment" is widely used throughout the world. In late 2003, it became NACE MR0175/ ISO 15156, "Petroleum and Natural Gas Industries - Materials for Use in $\mathrm{H}_{2} \mathrm{~S}$-Containing Environments in Oil and Gas Production." These standards specify the proper materials, heat treat conditions and strength levels required to provide good service life in sour gas and oil environments.

NACE International (formerly the National Association of Corrosion Engineers) is a worldwide technical organization which studies various aspects of corrosion and the damage that may result in refineries, chemical plants, water systems and other types of industrial equipment. MR0175 was first issued in 1975, but the origin of the document dates to 1959 when a group of engineers in Western Canada pooled their experience in successful handling of sour gas. The group organized as a NACE committee and in 1963 issued specification 1B163, "Recommendations of Materials for Sour Service." In 1965, NACE organized a nationwide committee, which issued 1F166 in 1966 and MR0175 in 1975. Revisions were issued on an annual basis as new materials and processes were added. Revisions had to receive unanimous approval from the responsible NACE committee.

In the mid-1990's, the European Federation of Corrosion (EFC) issued 2 reports closely related to MR0175; Publication 16, "Guidelines on Materials Requirements for Carbon and Low Alloy Steels for $\mathrm{H}_{2} \mathrm{~S}$-Containing Environments in Oil and Gas Production" and Publication 17, "Corrosion Resistant Alloys for Oil and Gas Production: Guidance on General Requirements and Test Methods for $\mathrm{H}_{2} \mathrm{~S}$ Service." EFC is located in London, England.

The International Organization for Standardization (ISO) is a worldwide federation of national standards bodies from more than 140 countries. One organization from each country acts as the representative for all organizations in that country. The American National Standards Institute (ANSI) is the USA representative in ISO. Technical Committee 67, "Materials, Equipment and Offshore Structures for Petroleum, Petrochemical and Natural Gas Industries," requested that NACE blend the different sour service documents into a single global standard.

This task was completed in late 2003 and the document was issued as ISO standard, NACE MR0175/ISO 15156. It is now maintained by ISO/TC 67, Work Group 7, a 12-member "Maintenance Panel" and a 40-member Oversight Committee
under combined NACE/ISO control. The three committees are an international group of users, manufacturers and service providers. Membership is approved by NACE and ISO based on technical knowledge and experience. Terms are limited. Previously, some members on the NACE Task Group had served for over 25 years.

NACE MR0175/ISO 15156 is published in 3 volumes.
Part 1: General Principles for Selection of Cracking-Resistant Materials
Part 2: Cracking-Resistant Carbon and Low Alloy Steels, and the Use of Cast Irons

Part 3: Cracking-Resistant CRA's (Corrosion-Resistant Alloys) and Other Alloys

NACE MR0175/ISO 15156 applies only to petroleum production, drilling, gathering and flow line equipment and field processing facilities to be used in $\mathrm{H}_{2} \mathrm{~S}$ bearing hydrocarbon service. In the past, MR0175 only addressed sulfide stress cracking (SSC). In NACE MR0175/ISO 15156, however, but both SSC and chloride stress corrosion cracking (SCC) are considered. While clearly intended to be used only for oil field equipment, industry has applied MR0175 in to many other areas including refineries, LNG plants, pipelines and natural gas systems. The judicious use of the document in these applications is constructive and can help prevent SSC failures wherever $\mathrm{H}_{2} \mathrm{~S}$ is present. Saltwater wells and saltwater handling facilities are not covered by NACE MR0175/ ISO 15156. These are covered by NACE Standard RP0475, "Selection of Metallic Materials to Be Used in All Phases of Water Handling for Injection into Oil-Bearing Formations."

When new restrictions are placed on materials in NACE MR0175/ ISO 15156 or when materials are deleted from this standard, materials in use at that time are in compliance. This includes materials listed in MR0175-2002, but not listed in NACE MR0175/ISO 15156. However, if this equipment is moved to a different location and exposed to different conditions, the materials must be listed in the current revision. Alternatively, successful use of materials outside the limitations of NACE MR0175/ISO 15156 may be perpetuated by qualification testing per the standard. The user may replace materials in kind for existing wells or for new wells within a given field if the environmental conditions of the field have not changed.

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

New Sulfide Stress Cracking Standard for Refineries

Don Bush, Principal Engineer - Materials, at Emerson Process Management Fisher Valves, is a member and former chair of a NACE task group that has written a document for refinery applications, NACE MR0103. The title is "Materials Resistant to Sulfide Stress Cracking in Corrosive Petroleum Refining Environments." The requirements of this standard are very similar to the pre-2003 MR0175 for many materials. When applying this standard, there are changes to certain key materials compared with NACE MR0175-2002.

Responsibility

It has always been the responsibility of the end user to determine the operating conditions and to specify when NACE MR0175 applies. This is now emphasized more strongly than ever in NACE MR0175/ISO 15156. The manufacturer is responsible for meeting the metallurgical requirements of NACE MR0175/ISO 15156. It is the end user's responsibility to ensure that a material will be satisfactory in the intended environment. Some of the operating conditions which must be considered include pressure, temperature, corrosiveness, fluid properties, etc. When bolting components are selected, the pressure rating of flanges could be affected. It is always the responsibility of the equipment user to convey the environmental conditions to the equipment supplier, particularly if the equipment will be used in sour service.

The various sections of NACE MR0175/ISO 15156 cover the commonly available forms of materials and alloy systems. The requirements for heat treatment, hardness levels, conditions of mechanical work and post-weld heat treatment are addressed for each form of material. Fabrication techniques, bolting, platings and coatings are also addressed.

Applicability of NACE MR0175/ISO 15156

Low concentrations of $\mathrm{H}_{2} \mathrm{~S}\left(<0.05 \mathrm{psi}(0,3 \mathrm{kPa}) \mathrm{H}_{2} \mathrm{~S}\right.$ partial pressure) and low pressures ($<65 \mathrm{psia}$ or 450 kPa) are considered outside the scope of NACE MR0175/ISO 15156. The low stress levels at low pressures or the inhibitive effects of oil may give satisfactory performance with standard commercial equipment. Many users, however, have elected to take a conservative approach and specify compliance to either NACE MR0175 or NACE MR0175/ISO 15156 any time a measurable amount of $\mathrm{H}_{2} \mathrm{~S}$ is present. The decision to follow these specifications must be made by the user based on economic impact, the safety aspects should a failure occur and past field experience. Legislation can impact the decision as well. Such jurisdictions include; the Texas Railroad Commission and the U.S. Minerals Management Service (offshore). The Alberta, Canada Energy Conservation Board recommends use of the specifications.

Figure 1. Photomicrograph Showing Stress Corrosion Cracking

Basics of Sulfide Stress Cracking (SSC) and Stress Corrosion Cracking (SCC)

SSC and SCC are cracking processes that develop in the presence of water, corrosion and surface tensile stress. It is a progressive type of failure that produces cracking at stress levels that are well below the material's tensile strength. The break or fracture appears brittle, with no localized yielding, plastic deformation or elongation. Rather than a single crack, a network of fine, feathery, branched cracks will form (see Figure 1). Pitting is frequently seen, and will serve as a stress concentrator to initiate cracking.

With SSC, hydrogen ions are a product of the corrosion process (Figure 2). These ions pick up electrons from the base material producing hydrogen atoms. At that point, two hydrogen atoms may combine to form a hydrogen molecule. Most molecules will eventually collect, form hydrogen bubbles and float away harmlessly. However, some percentage of the hydrogen atoms will diffuse into the base metal and embrittle the crystalline structure. When a certain critical concentration of hydrogen is reached and combined with a tensile stress exceeding a threshold level, SSC will occur. $\mathrm{H}_{2} \mathrm{~S}$ does not actively participate in the SSC reaction; however, sulfides act to promote the entry of the hydrogen atoms into the base material.

As little as $0.05 \mathrm{psi}(0,3 \mathrm{kPa}) \mathrm{H}_{2} \mathrm{~S}$ partial pressure in 65 psia (450 kPa) hydrocarbon gas can cause SSC of carbon and low alloy steels. Sulfide stress cracking is most severe at ambient temperature, particularly in the range of 20° to $120^{\circ} \mathrm{F}\left(-6^{\circ}\right.$ to $\left.49^{\circ} \mathrm{C}\right)$. Below $20^{\circ} \mathrm{F}\left(-6^{\circ} \mathrm{C}\right)$ the diffusion rate of the hydrogen is

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

Figure 2. Schematic Showing the Generation of Hydrogen Producing SSC
so slow that the critical concentration is never reached. Above $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$, the diffusion rate is so fast that the hydrogen atoms pass through the material in such a rapid manner that the critical concentration is not reached.

Chloride SCC is widely encountered and has been extensively studied. Much is still unknown, however, about its mechanism. One theory says that hydrogen, generated by the corrosion process, diffuses into the base metal in the atomic form and embrittles the lattice structure. A second, more widely accepted theory proposes an electrochemical mechanism. Stainless steels are covered with a protective, chromium oxide film. The chloride ions rupture the film at weak spots, resulting in anodic (bare) and cathodic (film covered) sites. The galvanic cell produces accelerated attack at the anodic sites, which when combined with tensile stresses produces cracking. A minimum ion concentration is required to produce SCC . As the concentration increases, the environment becomes more severe, reducing the time to failure.

Temperature also is a factor in SCC. In general, the likelihood of SCC increases with increasing temperature. A minimum threshold temperature exists for most systems, below which SCC is rare. Across industry, the generally accepted minimum temperature for chloride SCC of the 300 SST's is about $160^{\circ} \mathrm{F}\left(71^{\circ} \mathrm{C}\right)$. NACE MR0175/ISO 15156 has set a very conservative limit of $140^{\circ} \mathrm{F}$ $\left(60^{\circ} \mathrm{C}\right)$ due to the synergistic effects of the chlorides, $\mathrm{H}_{2} \mathrm{~S}$ and low pH values. As the temperature increases above these values, the time to failure will typically decrease.

Resistance to chloride SCC increases with higher alloy materials. This is reflected in the environmental limits set by NACE

MR0175/ISO 15156. Environmental limits progressively increase from 400 Series SST and ferritic SST to 300 Series, highly alloy austenitic SST, duplex SST, nickel and cobalt base alloys.

Carbon Steel

Carbon and low-alloy steels have acceptable resistance to SSC and SCC however; their application is often limited by their low resistance to general corrosion. The processing of carbon and low alloy steels must be carefully controlled for good resistance to SSC and SCC. The hardness must be less than 22 HRC. If welding or significant cold working is done, stress relief is required. Although the base metal hardness of a carbon or alloy steel is less than 22 HRC , areas of the heat affected zone (HAZ) will be harder. PWHT will eliminate these excessively hard areas.

ASME SA216 Grades WCB and WCC and SAME SA105 are the most commonly used body materials. It is Fisher's policy to stress relieve all welded carbon steels that are supplied to NACE MR0175/ISO 15156.

All carbon steel castings sold to NACE MR0175/ISO 15156 requirements are produced using one of the following processes:

1. In particular product lines where a large percentage of carbon steel assemblies are sold as NACE MR0175/ISO 15156 compliant, castings are ordered from the foundry with a requirement that the castings be either normalized or stress relieved following all weld repairs, major or minor. Any weld repairs performed, either major or minor, are subsequently stress relieved.
2. In product lines where only a small percentage of carbon steel products are ordered NACE MR0175/ISO 15156 compliant, stock castings are stress relieved whether they are weld repaired by Emerson Process Management or not. This eliminates the chance of a minor foundry weld repair going undetected and not being stress relieved.

ASME SA352 grades LCB and LCC have the same composition as WCB and WCC, respectively. They are heat treated differently and impact tested at $-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$ to ensure good toughness in low temperature service. LCB and LCC are used in locations where temperatures commonly drop below the $-20^{\circ} \mathrm{F}\left(-29^{\circ} \mathrm{C}\right)$ permitted for WCB and WCC. LCB and LCC castings are processed in the same manner as WCB and WCC when required to meet NACE MR0175/ ISO 15156.

For carbon and low-alloy steels NACE MR0175/ISO 15156 imposes some changes in the requirements for the weld procedure qualification report (PQR). All new PQR's will meet these requirements; however, it will take several years for Emerson Process Management and our suppliers to complete this work. At this time, we will require user approval to use HRC.

TECHNICAL

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

Carbon and Low-Alloy Steel Welding Hardness Requirements

- HV-10, HV-5 or Rockwell 15N.
- HRC testing is acceptable if the design stresses are less than 67% of the minimum specified yield strength and the PQR includes PWHT.
- Other methods require user approval.
- 250 HV or 70.6 HR15N maximum.
- 22 HRC maximum if approved by user.

Low-Alloy Steel Welding Hardness Requirements

- All of the above apply with the additional requirement of stress relieve at $1150^{\circ} \mathrm{F}\left(621^{\circ} \mathrm{C}\right)$ minimum after welding.

All new PQR's at Emerson Process Management and our foundries will require hardness testing with HV-10, HV-5 or Rockwell 15 N and HRC. The acceptable maximum hardness values will be 250 HV or 70.6 HR15N and 22 HRC. Hardness traverse locations are specified in NACE MR0175/ISO 15156 part 2 as a function of thickness and weld configuration. The number and locations of production hardness tests are still outside the scope of the standard. The maximum allowable nickel content for carbon and low-alloy steels and their weld deposits is 1%.

Low alloy steels like WC6, WC9, and C5 are acceptable to NACE MR0175/ISO 15156 to a maximum hardness of 22 HRC. These castings must all be stress relieved to FMS 20B52.

The compositions of C12, C12a, F9 and F91 materials do not fall within the definition of "low alloy steel" in NACE MR0175/ISO 15156, therefore, these materials are not acceptable.

A few customers have specified a maximum carbon equivalent (CE) for carbon steel. The primary driver for this requirement is to improve the SSC resistance in the as-welded condition. Fisher's practice of stress relieving all carbon steel negates this need. Decreasing the CE reduces the hardenability of the steel and presumably improves resistance to sulfide stress cracking (SSC). Because reducing the CE decreases the strength of the steel, there is a limit to how far the CE can be reduced.

Cast Iron

Gray, austenitic and white cast irons cannot be used for any pressure-retaining parts, due to low ductility. Ferritic ductile iron to ASTM A395 is acceptable when permitted by ANSI, API or other industry standards.

Stainless Steel

400 Series Stainless Steel

UNS 410 (410 SST), CA15 (cast 410), 420 (420 SST) and several other martensitic grades must be double tempered to a maximum hardness of 22 HRC. PWHT is also required. An environmental limit now applies to the martensitic grades; $1.5 \mathrm{psi}(10 \mathrm{kPa}) \mathrm{H}_{2} \mathrm{~S}$ partial pressure and pH greater than or equal to $3.5,416$ (416 SST) is similar to $410(410)$ with the exception of a sulfur addition to produce free machining characteristics. Use of 416 and other free machining steels is not permitted by NACE MR0175/ISO 15156.

CA6NM is a modified version of the cast 410 stainless steel. NACE MR0175/ISO 15156 allows its use, but specifies the exact heat treatment required. Generally, the carbon content must be restricted to 0.03% maximum to meet the 23 HRC maximum hardness. PWHT is required for CA6NM. The same environmental limit applies; $1.5 \mathrm{psi}(10 \mathrm{kPa}) \mathrm{H}_{2} \mathrm{~S}$ partial pressure and pH greater than or equal to 3.5 .

300 Series Stainless Steel

Several changes have been made with the requirements of the austenitic (300 Series) stainless steels. Individual alloys are no longer listed. All alloys with the following elemental ranges are acceptable: C 0.08% maximum, $\mathrm{Cr} 16 \%$ minimum, $\mathrm{Ni} 8 \%$ minimum, P 0.045% maximum, $\mathrm{S} 0.04 \%$ maximum, $\mathrm{Mn} 2.0 \%$ maximum, and $\mathrm{Si} 2.0 \%$ maximum. Other alloying elements are permitted. The other requirements remain; solution heat treated condition, 22 HRC maximum and free of cold work designed to improve mechanical properties. The cast and wrought equivalents of 302, 304 (CF8), S30403 (CF3), 310 (CK20), 316 (CF8M), S31603 (CF3M), 317 (CG8M), S31703 (CG3M), 321, 347 (CF8C) and N08020 (CN7M) are all acceptable per NACE MR0175/ISO 15156.

Environmental restrictions now apply to the 300 Series SST. The limits are $15 \mathrm{psia}(100 \mathrm{kPa}) \mathrm{H}_{2} \mathrm{~S}$ partial pressure, a maximum temperature of $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$, and no elemental sulfur. If the chloride content is less than $50 \mathrm{mg} / \mathrm{L}(50 \mathrm{ppm})$, the $\mathrm{H}_{2} \mathrm{~S}$ partial pressure must be less than $50 \mathrm{psia}(350 \mathrm{kPa})$ but there is no temperature limit.

There is less of a restriction on 300 Series SST in oil and gas processing and injection facilities. If the chloride content in aqueous solutions is low (typically less than $50 \mathrm{mg} / \mathrm{L}$ or 50 ppm chloride) in operations after separation, there are no limits for austenitic stainless steels, highly alloyed austenitic stainless steels, duplex stainless steels, or nickel-based alloys.

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

Post-weld heat treatment of the 300 Series SST is not required. Although the corrosion resistance may be affected by poorly controlled welding, this can be minimized by using the low carbon filler material grades, low heat input levels and low interpass temperatures. We impose all these controls as standard practice. NACE MR0175/ISO 15156 now requires the use of "L" grade consumables with 0.03% carbon maximum.

S20910

S20910 (Nitronic ${ }^{\circledR}$ 50) is acceptable in both the annealed and high strength conditions with environmental restrictions; $\mathrm{H}_{2} \mathrm{~S}$ partial pressure limit of $15 \mathrm{psia}(100 \mathrm{kPa})$, a maximum temperature of $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$, and no elemental sulfur. This would apply to components such as bolting, plugs, cages, seat rings and other internal parts. Strain hardened (cold-worked) S20910 is acceptable for shafts, stems, and pins without any environmental restrictions. Because of the environmental restrictions and poor availability on the high strength condition, use of S20910 will eventually be discontinued except for shafts, stems and pins where unrestricted application is acceptable for these components.

CK3MCuN

The cast equivalent of S31254 (Avesta 254SMO ${ }^{\circledR}$), CK3MCuN (UNS J93254), is included in this category. The same elemental limits apply. It is acceptable in the cast, solution heat-treated condition at a hardness level of 100 HRB maximum in the absence of elemental sulfur.

S17400

The use of S17400 (17-4PH) is now prohibited for pressureretaining components including bolting, shafts and stems. Prior to 2003, S17400 was listed as an acceptable material in the general section (Section 3) of NACE MR0175. Starting with the 2003 revision, however, it is no longer listed in the general section. Its use is restricted to internal, non-pressure containing components in valves, pressure regulators and level controllers. This includes cages and other trim parts. 17-4 bolting will no longer be supplied in any NACE MR0175/ISO 15156 construction. The 17-4 and 15-5 must be heat-treated to the H1150 DBL condition or the H1150M condition. The maximum hardness of 33 HRC is the same for both conditions.

CB7Cu-1 and CB7Cu-2 (cast 17-4PH and 15-5 respectively) in the H1150 DBL condition are also acceptable for internal valve and regulator components. The maximum hardness is 30 HRC or 310 HB for both alloys.

Duplex Stainless Steel

Wrought and cast duplex SST alloys with 35-65\% ferrite are acceptable based on the composition of the alloy, but there are environmental restrictions. There is no differentiation between cast and wrought, therefore, cast CD3MN is now acceptable. There are two categories of duplex SST. The "standard" alloys with a $30 \leq \mathrm{PREN} \leq 40$ and $\geq 1.5 \% \mathrm{Mo}$, and the "super" duplex alloys with PREN >40. The PREN is calculated from the composition of the material. The chromium, molybdenum, tungsten and nitrogen contents are used in the calculation. NACE MR0175/ISO 15156 uses this number for several classes of materials.

$$
\operatorname{PREN}=\mathrm{Cr} \%+3.3(\mathrm{Mo} \%+0.5 \mathrm{~W} \%)+16 \mathrm{~N} \%
$$

The "standard" duplex SST grades have environmental limits of $450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$ maximum and $\mathrm{H}_{2} \mathrm{~S}$ partial pressure of $1.5 \mathrm{psia}(10 \mathrm{kPa})$ maximum. The acceptable alloys include S31803, CD3MN, S32550 and CD7MCuN (Ferralium ${ }^{\circledR} 255$). The alloys must be in the solution heat-treated and quenched condition. There are no hardness restrictions in NACE MR0175/ISO 15156, however, 28 HRC remains as the limit in the refinery document MR0103.

The "super" duplex SST with PREN>40 have environmental limits of $450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$ maximum and $\mathrm{H}_{2} \mathrm{~S}$ partial pressure of $3 \mathrm{psia}(20 \mathrm{kPa})$ maximum. The acceptable "super" duplex SST's include S32760 and CD3MWCuN (Zeron ${ }^{\circledR} 100$).

The cast duplex SST Z 6CNDU20.08M to the French National Standard NF A 320-55 is no longer acceptable for NACE MR0175/ ISO 15156 applications. The composition fails to meet the requirements set for either the duplex SST or the austenitic SST.

Highly Alloyed Austenitic Stainless Steels

There are two categories of highly alloyed austenitic SST's that are acceptable in the solution heat-treated condition. There are different compositional and environmental requirements for the two categories. The first category includes alloys S31254 (Avesta $254 \mathrm{SMO}^{\circledR}$) and N08904 (904L); $\mathrm{Ni} \%+2 \mathrm{Mo} \%>30$ and $\mathrm{Mo}=2 \%$ minimum.

Alloy S31254 and N08904 Environmetal Limits			
MAXIMUM TEMPERATURE	MAXIMUM H2S PARTAL PRESSURE	MAXIMUM CHLORIDES	ELEMENTAL SULFUR
$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$	1.5 psia $(10 \mathrm{kPa})$	No restriction	No
$140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$	50 psia $(345 \mathrm{kPa})$	$50 \mathrm{mg} / \mathrm{L}$ Chloride	No

Technical

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

The second category of highly alloyed austenitic stainless steels are those having a PREN >40. This includes S31654 (Avesta 654SMO ${ }^{\circledR}$), N08926 (Inco 25-6Mo), N08367 (AL-6XN), S31266 (UR B66) and S34565. The environmental restrictions for these alloys are as follows:

Alloy S31654, N08926, N08367, S31266, and S34565				
Environmental Limits				

Nonferrous Alloys

Nickel-Base Alloys

Nickel base alloys have very good resistance to cracking in sour, chloride containing environments. There are 2 different categories of nickel base alloys in NACE MR0175/ISO 15156:

- Solid-solution nickel-based alloys
- Precipitation hardenable alloys

The solid solution alloys are the Hastelloy ${ }^{\circledR} \mathrm{C}$, Inconel ${ }^{\circledR} 625$ and Incoloy ${ }^{\circledR} 825$ type alloys. Both the wrought and cast alloys are acceptable in the solution heat-treated condition with no hardness limits or environmental restrictions. The chemical composition of these alloys is as follows:

- 19.0\% Cr minimum, 29.5\% Ni minimum, and 2.5\% Mo minimum. Includes N06625, CW6MC, N08825, CU5MCuC.
- 14.5% Cr minimum, $52 \% \mathrm{Ni}$ minimum, and $12 \% \mathrm{Mo}$ minimum. Includes N10276, N06022, CW2M.

N08020 and CN7M (alloy 20 Cb 3) are not included in this category. They must follow the restrictions placed on the austenitic SST's like 304, 316 and 317.

Although originally excluded from NACE MR0175/ISO 15156, N04400 (Monel ${ }^{\circledR} 400$) in the wrought and cast forms are now included in this category.

The precipitation hardenable alloys are Incoloy ${ }^{\circledR} 925$, Inconel ${ }^{\circledR} 718$ and X750 type alloys. They are listed in the specification as individual alloys. Each has specific hardness and environmental restrictions.

N07718 is acceptable in the solution heat-treated and precipitation hardened condition to 40 HRC maximum. N09925 is acceptable in the cold-worked condition to 35 HRC maximum, solutionannealed and aged to 38 HRC maximum and cold-worked and aged to 40 HRC maximum.

The restrictions are as follows:

Cast N07718 Environmental Limits		
MAXIMUM TEMPERATURE	MAXIMUM H S PARTIAL PRESSURE	ELEMENTAL SULFUR
$450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$	30 psia $(0,2 \mathrm{MPa})$	No
$400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$	200 psia $(1,4 \mathrm{MPa})$	No
$300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$	400 psia $(2,8 \mathrm{MPa})$	No
$275^{\circ} \mathrm{F}\left(135^{\circ} \mathrm{C}\right)$	No limit	Yes

Cast N07718 is acceptable in the solution heat-treated and precipitation hardened condition to 35 HRC maximum. The restrictions are as follows:

Alloy N07718 and N09925 Environmental Limits		
MAXIMUM TEMPERATURE	MAXIMUM H2S PARTIAL PRESSURE	ELEMENTAL SULFUR
$450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$	30 psia $(0,2 \mathrm{MPa})$	No
$400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$	200 psia $(1,4 \mathrm{MPa})$	No
$390^{\circ} \mathrm{F}\left(199^{\circ} \mathrm{C}\right)$	330 psia $(2,3 \mathrm{MPa})$	No
$375^{\circ} \mathrm{F}\left(191^{\circ} \mathrm{C}\right)$	360 psia $(2,5 \mathrm{MPa})$	No
$300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$	400 psia $(2,8 \mathrm{MPa})$	No
$275^{\circ} \mathrm{F}\left(135^{\circ} \mathrm{C}\right)$	No limit	Yes

Monel ${ }^{\circledR}$ K500 and Inconel ${ }^{\oplus}$ X750

N05500 and N07750 are now prohibited for use in pressureretaining components including bolting, shafts and stems. They can still be used for internal parts such as cages, other trim parts and torque tubes. There are no environmental restrictions, however, for either alloy. They must be in the solution heat-treated condition with a maximum hardness of 35 HRC. N07750 is still acceptable for springs to 50 HRC maximum.

Cobalt-Base Alloys

Alloy 6 castings and hardfacing are still acceptable. There are no environmental limits with respect to partial pressures of $\mathrm{H}_{2} \mathrm{~S}$ or elemental sulfur. All other cobalt-chromium-tungsten, nickel-chromium-boron (Colmonoy) and tungsten-carbide castings are also acceptable without restrictions.

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

All cobalt based, nickel based and tungsten-carbide weld overlays are acceptable without environmental restrictions. This includes CoCr-A, NiCr-A (Colmonoy ${ }^{\circledR}$ 4), NiCr-C (Colmonoy ${ }^{\circledR}$ 6) and Haynes Ultimet ${ }^{\circledR}$ hardfacing.

Wrought UNS R31233 (Haynes Ultimet ${ }^{\circledR 8}$) is acceptable in the solution heat-treated condition to 22 HRC maximum, however, all production barstock exceeds this hardness limit. Therefore, Ultimet ${ }^{\circledR}$ barstock cannot be used for NACE MR0175/ISO 15156 applications. Cast Ultimet is not listed in NACE MR0175/ISO 15156.

R30003 (Elgiloy ${ }^{\circledR}$) springs are acceptable to 60 HRC in the cold worked and aged condition. There are no environmental restrictions.

Aluminum and Copper Alloys

Per NACE MR0175/ISO 15156, environmental limits have not been established for aluminum base and copper alloys. This means that they could be used in sour applications per the requirements of NACE MR0175/ISO 15156, however, they should not be used because severe corrosion attack will likely occur. They are seldom used in direct contact with $\mathrm{H}_{2} \mathrm{~S}$.

Titanium

Environmental limits have not been established for the wrought titanium grades. Fisher ${ }^{\circledR}$ has no experience in using titanium in sour applications. The only common industrial alloy is wrought R50400 (grade 2). Cast titanium is not included in NACE MR0175/ISO 15156

Zirconium

Zirconium is not listed in NACE MR0175/ISO 15156.

Springs

Springs in compliance with NACE represent a difficult problem. To function properly, springs must have very high strength (hardness) levels. Normal steel and stainless steel springs would be very susceptible to SSC and fail to meet NACE MR0175/ISO 15156. In general, relatively soft, low strength materials must be used. Of course, these materials produce poor springs. The two exceptions allowed are the cobalt based alloys, such as R30003 (Elgiloy ${ }^{\circledR}$), which may be cold worked and hardened to a maximum hardness of 60 HRC and alloy N07750 (alloy X750) which is permitted to 50 HRC . There are no environmental restrictions for these alloys.

Coatings

Coatings, platings and overlays may be used provided the base metal is in a condition which is acceptable per NACE MR0175/ISO 15156. The coatings may not be used to protect a base material which is susceptible to SSC. Coatings commonly used in sour service are chromium plating, electroless nickel (ENC) and nitriding. Overlays and castings commonly used include $\mathrm{CoCr}-$ A (Stellite ${ }^{\circledR}$ or alloy 6), R30006 (alloy 6B), NiCr-A and NiCr-C (Colmonoy ${ }^{\circledR} 4$ and 6) nickel-chromium-boron alloys. Tungsten carbide alloys are acceptable in the cast, cemented or thermally sprayed conditions. Ceramic coatings such as plasma sprayed chromium oxide are also acceptable. As is true with all materials in NACE MR0175/ISO 15156, the general corrosion resistance in the intended application must always be considered.

NACE MR0175/ISO 15156 permits the uses of weld overlay cladding to protect an unacceptable base material from cracking. Fisher does not recommend this practice, however, as hydrogen could diffuse through the cladding and produce cracking of a susceptible basemetal such as carbon or low alloy steel.

Stress Relieving

Many people have the misunderstanding that stress relieving following machining is required by NACE MR0175/ISO 15156. Provided good machining practices are followed using sharp tools and proper lubrication, the amount of cold work produced is negligible. SSC and SCC resistance will not be affected. NACE MR0175/ISO 15156 actually permits the cold rolling of threads, provided the component will meet the heat treat conditions and hardness requirements specified for the given parent material. Cold deformation processes such as burnishing are also acceptable.

Bolting

Bolting materials must meet the requirements of NACE MR0175/ ISO 15156 when directly exposed to the process environment ("exposed" applications). Standard ASTM A193 and ASME SA193 grade B7 bolts or ASTM A194 and ASME SA194 grade 2 H nuts can and should be used provided they are outside of the process environment ("non-exposed" applications). If the bolting will be deprived atmospheric contact by burial, insulation or flange protectors and the customer specifies that the bolting will be "exposed", then grades of bolting such as B7 and 2H are unacceptable. The most commonly used fasteners listed for "exposed" applications are grade B7M bolts (99 HRB maximum) and grade 2HM nuts (22 HRC maximum). If 300 Series SST fasteners are needed, the bolting grades B8A Class 1A and B8MA Class 1A are acceptable. The corresponding nut grades are 8A and 8MA.

Technical

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

It must be remembered, however, that the use of lower strength bolting materials such as B7M may require pressure vessel derating. The special S17400 double H1150 bolting previously offered on E body valves to maintain the full B7 rating is no longer acceptable to NACE MR0175/ISO 15156. Prior to the 2003, S17400 was listed as an acceptable material in the general section (Section 3) of NACE MR0175. Following the 2003 revision, it is no longer listed in the general section. Its use is now restricted to internal, non-pressure containing components in valves, pressure regulators and level controllers. The use of S17400 for bolting is specifically prohibited. N07718 (alloy 718) bolting with 2HM nuts is one alternative.

Two different types of packing box studs and nuts are commonly used by Fisher ${ }^{\circledR}$. The stainless steel type is B8M S31600 class 2 (strain hardened) and 316 nuts per FMS 20B86. The steel type is B7 studs with 2 H nuts. If the customer specifies that the packing box studs and nuts are "exposed" then grade B7M studs and grade 2HM nuts or B8MA Class 1A studs and 8MA nuts are commonly used.

Bolting Coatings

NFC (Non-Corroding Finish) and ENC (Electroless Nickel Coating) coatings are acceptable on pressure-retaining and non-pressure-retaining fasteners. For some reason, there is often confusion regarding the acceptability of zinc plated fasteners per NACE MR0175/ISO 15156. NACE MR0175/ISO 15156 does not preclude the use of any coating, provided it is not used in an attempt to prevent SSC or SCC of an otherwise unacceptable base material. However, zinc plating of pressure-retaining bolting is not recommended due to liquid metal induced embrittlement concerns.

Composition Materials

NACE MR0175/ISO 15156 does not address elastomer and polymer materials although ISO/TC 67, Work Group 7 is now working on a Part 4 to address these materials. The importance of these materials in critical sealing functions, however, cannot be overlooked. User experience has been successful with elastomers such as Nitrile (NBR), Neoprene and the Fluoroelastomers (FKM) and Perfluoroelastomers (FFKM). In general, fluoropolymers such as Polytetrafluoroethylene (PTFE), TCM Plus, TCM Ultra and TCM III can be applied without reservation within their normal temperature range.

Elastomer use is as follows:

1. If possible, use HNBR for sour natural gas, oil, or water at temperatures below $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$. It covers the widest range of sour applications at a lower cost than PTFE or Fluoroelastomer (FKM). Unfortunately, the material is
relatively new, and only a handful of parts are currently set up. Check availability before specifying.
2. Use PTFE for sour natural gas, oil, or water applications at temperatures between $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$ and $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$.
3. Fluoroelastomer (FKM) can be used for sour natural gas, oil, or water applications with less than $10 \% \mathrm{H}_{2} \mathrm{~S}$ and temperatures below $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$.
4. Conventional Nitrile (NBR) can be used for sour natural gas, oil, or water applications with less than $1 \% \mathrm{H}_{2} \mathrm{~S}$ and temperatures below $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$.
5. CR can be used for sour natural gas or water applications involving temperatures below $150^{\circ} \mathrm{F}\left(66^{\circ} \mathrm{C}\right)$. Its resistance to oil is not as good.
6. IIR and Ethylenepropylene (EPDM) (or EPR) can be used for $\mathrm{H}_{2} \mathrm{~S}$ applications that don't involve hydrocarbons $\left(\mathrm{H}_{2} \mathrm{~S}\right.$ gas, sour water, etc.).

Tubulars

A separate section has been established for downhole tubulars and couplings. This section contains provisions for using materials in the cold-drawn condition to higher hardness levels (cold-worked to 35 HRC maximum). In some cases, the environmental limits are also different. This has no affect on Fisher as we do not make products for these applications. Nickel-based components used for downhole casing, tubing, and the related equipment (hangers and downhole component bodies; components that are internal to the downhole component bodies) are subject to the requirements.

Expanded Limits and Materials

With documented laboratory testing and/or field experience, it is possible to expand the environmental limits of materials in NACE MR0175/ISO 15156 or use materials not listed in NACE MR0175/ ISO 15156. This includes increasing the $\mathrm{H}_{2} \mathrm{~S}$ partial pressure limit or temperature limitations. Supporting documentation must be submitted to NACE International Headquarters, which will make the data available to the public. NACE International will neither review nor approve this documentation. It is the user's responsibility to evaluate and determine the applicability of the documented data for the intended application.

It is the user's responsibility to ensure that the testing cited is relevant for the intended applications. Choice of appropriate temperatures and environments for evaluating susceptibility to both SCC and SSC is required. NACE Standard TM0177 and EFC Publication \#1739 provide guidelines for laboratory testing.

TECHNICAL

Sulfide Stress Cracking
 --NACE MR0175-2002, MR0175/ISO 15156

Field-based documentation for expanded alloy use requires exposure of a component for sufficient time to demonstrate its resistance to $\mathrm{SCC} / \mathrm{SSC}$. Sufficient information on factors that affect SCC/SSC (e.g., stress levels, fluid and gas composition, operating conditions, galvanic coupling, etc.) must be documented.

Codes and Standards

Applicable ASTM, ANSI, ASME and API standards are used along with NACE MR0175/ISO 15156 as they would normally be used for other applications. The NACE MR0175/ISO 15156 requires that all weld procedures be qualified to these same standards. Welders must be familiar with the procedures and capable of making welds which comply.

Certification

Fisher ${ }^{\circledR}$ Certification Form 7508 is worded as follows for NACE MR0175-2002 and MR0175/ISO 15156:
"NACE MR0175/ISO 15156 OR NACE MR0175-2002: This unit meets the metallurgical requirements of NACE MR0175 or ISO 15156 (revision and materials of construction as specified by the customer). Environmental restrictions may apply to wetted parts and/or bolting."

Chemical Compatibility of Elastomers and Metals

Introduction

This section explains the uses and compatibilities of elastomers commonly used in Fisher ${ }^{\circledR}$ regulators. The following tables provide the compatibility of the most common elastomers and metals to a variety of chemicals and/or compounds.

The information contained herein is extracted from data we believe to be reliable. However, because of variable service conditions over which we have no control, we do not in any way make any warranty, either express or implied, as to the properties of any materials or as to the performance of any such materials in any particular application, and we hereby expressly disclaim any responsibility for the accuracy of any of the information set forth herein.

Refer to the applicable process gas service code or standard to determine if a specific material found in the Process Gases Application Guide is allowed to be used in that service.

Elastomers: Chemical Names and Uses

NBR - Nitrile Rubber, also called Buna-N, is a copolymer of butadiene and acrylonitrile. Nitrile is recommended for: general purpose sealing, petroleum oils and fluids, water, silicone greases and oils, di-ester based lubricants (such as MIL-L-7808), and ethylene glycol based fluids (Hydrolubes). It is not recommended for: halogenated hydrocarbons, nitro hydrocarbons (such as nitrobenzene and aniline), phosphate ester hydraulic fluids (Skydrol, Cellulube, Pydraul), ketones (MEK, acetone), strong acids, ozone, and automotive brake fluid. Its temperature range is -60° to $225^{\circ} \mathrm{F}\left(-51^{\circ}\right.$ to $107^{\circ} \mathrm{C}$), although this would involve more than one compound and would depend upon the stress state of the component in service

EPDM, EPM - Ethylenepropylene rubber is an elastomer prepared from ethylene and propylene monomers. EPM is a copolymer of ethylene and propylene, while EPDM contains a small amount of a third monomer (a diene) to aid in the curing process. EP is recommended for: phosphate ester based hydraulic fluids, steam to $400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$, water, silicone oils and greases, dilute acids, dilute alkalis, ketones, alcohols, and automotive brake fluids. It is not recommended for: petroleum oils, and di-ester based lubricants. Its temperature range is -60° to $500^{\circ} \mathrm{F}\left(-51^{\circ}\right.$ to $\left.260^{\circ} \mathrm{C}\right)$ (The high limit would make use of a special high temperature formulation developed for geothermal applications).
FKM - This is a fluoroelastomer of the polymethylene type having substituent fluoro and perfluoroalkyl or perfluoroalkoxy groups on the polymer chain. Viton ${ }^{\circledR}$ and Fluorel ${ }^{\circledR}$ are the most common trade names. FKM is recommended for: petroleum oils, di-ester based lubricants, silicate ester based lubricants (such as MLO 8200, MLO 8515, OS-45), silicone fluids and greases, halogenated hydrocarbons, selected phosphate ester fluids, and some acids. It is not recommended for: ketones, Skydrol 500, amines (UDMH), anhydrous ammonia, low molecular weight esters and ethers, and hot hydrofluoric and chlorosulfonic acids. Its temperature range is -20° to $450^{\circ} \mathrm{F}\left(-29^{\circ}\right.$ to $232^{\circ} \mathrm{C}$) (This extended range would require special grades and would limit use on each end of the range.).

CR - This is chloroprene, commonly know as neoprene, which is a homopolymer of chloroprene (chlorobutadiene). CR is recommended for: refrigerants (Freons, ammonia), high aniline point petroleum oils, mild acids, and silicate ester fluids. It is not recommended for: phosphate ester fluids and ketones. Its temperature range is -60° to $200^{\circ} \mathrm{F}\left(-51^{\circ}\right.$ to $\left.93^{\circ} \mathrm{C}\right)$, although this would involve more than one compound.

NR - This is natural rubber which is a natural polyisoprene, primarily from the tree, Hevea Brasiliensis. The synthetics have all but completely replaced natural rubber for seal use. NR is recommended for automotive brake fluid, and it is not recommended for petroleum products. Its temperature range is -80° to $180^{\circ} \mathrm{F}\left(-62^{\circ}\right.$ to $82^{\circ} \mathrm{C}$).
FXM - This is a copolymer of tetrafluoroethylene and propylene; hence, it is sometimes called PTFE/P rubber. Common trade names are Aflas ${ }^{\circledR}$ (Asahi Glass Co., Ltd) and Fluoraz ${ }^{\circledR}$ (Greene, Tweed \& Co.). It is generally used where resistance to both hydrocarbons and hot water are required. Its temperature range is 20° to $400^{\circ} \mathrm{F}\left(-7^{\circ}\right.$ to $\left.204^{\circ} \mathrm{C}\right)$.
ECO - This is commonly called Hydrin ${ }^{\circledR}$ rubber, although that is a trade name for a series of rubber materials by B.F. Goodrich. CO is the designation for the homopolymer of epichlorohydrin, ECO is the designation for a copolymer of ethylene oxide and chloromethyl oxirane (epichlorohydrin copolymer), and ETER is the designation for the terpolymer of epichlorohydrin, ethylene oxide, and an unsaturated monomer. All the epichlorohydrin rubbers exhibit better heat resistance than nitrile rubbers, but corrosion with aluminum may limit applications. Normal temperature range is $\left(-40^{\circ}\right.$ to $250^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.121^{\circ} \mathrm{C}\right)$, while maximum temperature ranges are -40° to $275^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.135^{\circ} \mathrm{C}\right)$ (for homopolymer CO$)$ and -65° to $275^{\circ} \mathrm{F}\left(-54^{\circ}\right.$ to $135^{\circ} \mathrm{C}$) (for copolymer ECO and terpolymer ETER).

FFKM - This is a perfluoroelastomer generally better known as Kalrez $^{\circledR}$ (DuPont) and Chemraz ${ }^{\circledR}$ (Greene, Tweed). Perfluoro rubbers of the polymethylene type have all substituent groups on the polymer chain of fluoro, perfluoroalkyl, or perfluoroalkoxy groups. The resulting polymer has superior chemical resistance and heat temperature resistance. This elastomer is extremely expensive and should be used only when all else fails. Its temperature range is 0° to $480^{\circ} \mathrm{F}\left(-18^{\circ}\right.$ to $\left.249^{\circ} \mathrm{C}\right)$. Some materials, such as Kalrez ${ }^{\circledR} 1050 \mathrm{LF}$ is usable to $550^{\circ} \mathrm{F}\left(288^{\circ} \mathrm{C}\right)$ and Kalrez ${ }^{\mathbb{8}} 4079$ can be used to $600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right)$.

FVMQ - This is fluorosilicone rubber which is an elastomer that should be used for static seals because it has poor mechanical properties. It has good low and high temperature resistance and is reasonably resistant to oils and fuels because of its fluorination. Because of the cost, it only finds specialty use. Its temperature range is -80° to $400^{\circ} \mathrm{F}\left(-62^{\circ}\right.$ to $\left.204^{\circ} \mathrm{C}\right)$.

VMQ - This is the most general term for silicone rubber. Silicone rubber can be designated MQ, PMQ, and PVMQ, where the Q designates any rubber with silicon and oxygen in the polymer chain, and M, P, and V represent methyl, phenyl, and vinyl substituent groups on the polymer chain. This elastomer is used only for static seals due to its poor mechanical properties. Its temperature range is -175° to $600^{\circ} \mathrm{F}\left(-115^{\circ}\right.$ to $\left.316^{\circ} \mathrm{C}\right)$ (Extended temperature ranges require special compounds for high or low temperatures).

TECHNICAL

Chemical Compatibility of Elastomers and Metals

General Properties of Elastomers													
PROPERTY		NATURAL RUBBER	BUNA-S	$\begin{gathered} \text { NITRILE } \\ \text { (NBR) } \end{gathered}$	NEOPRENE (CR)	BUTYL	THIOKOL*	SILICONE	HYPALON ${ }^{\text {® }}$	FLUORO- ELASTOMER (FKM)	POLYURETHANE ${ }^{(2)}$	POLYACRYLIC ${ }^{(1)}$	ETHYLENEPROPYLENE ${ }^{(3)}$ (EPDM)
Tensile Strength, Psi (bar)	Pure Gum	$\begin{aligned} & 3000 \\ & (207) \end{aligned}$	$\begin{aligned} & 400 \\ & \text { (28) } \\ & \hline \end{aligned}$	$\begin{aligned} & 600 \\ & (41) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3500 \\ & (241) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3000 \\ & (207) \\ & \hline \end{aligned}$	$\begin{aligned} & 300 \\ & \text { (21) } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 200 \text { to } 450 \\ (14 \text { to } 31) \\ \hline \end{array}$	$\begin{aligned} & \hline 4000 \\ & (276) \\ & \hline \end{aligned}$			$\begin{array}{r} 100 \\ (7) \\ \hline \end{array}$	
	Reinforced	$\begin{aligned} & 4500 \\ & (310) \end{aligned}$	3000 (207)	$\begin{aligned} & 4000 \\ & (276) \end{aligned}$	$\begin{array}{r} 3500 \\ (241) \\ \hline \end{array}$	$\begin{array}{r} 3000 \\ (207) \\ \hline \end{array}$	$\begin{aligned} & 1500 \\ & (103) \\ & \hline \end{aligned}$	$\begin{aligned} & 1100 \\ & (76) \end{aligned}$	$\begin{aligned} & 4400 \\ & (303) \end{aligned}$	$\begin{aligned} & 2300 \\ & (159) \\ & \hline \end{aligned}$	$\begin{aligned} & 6500 \\ & (448) \end{aligned}$	$\begin{aligned} & 1800 \\ & (124) \end{aligned}$	$\begin{array}{r} 2500 \\ (172) \\ \hline \end{array}$
Tear Resistance		Excellent	Poor-Fair	Fair	Good	Good	Fair	Poor-Fair	Excellent	Good	Excellent	Fair	Poor
Abrasion Resistance		Excellent	Good	Good	Excellent	Fair	Poor	Poor	Excellent	Very Good	Excellent	Good	Good
Aging: Sunlight Oxidation		Poor Good	$\begin{aligned} & \text { Poor } \\ & \text { Fair } \end{aligned}$	$\begin{aligned} & \text { Poor } \\ & \text { Fair } \end{aligned}$	Excellent Good	Excellent Good	Good Good	Good Very Good	Excellent Very Good	Excellent Excellent	Excellent Excellent	Excellent Excellent	Good
Heat(MaximumTemperature)		$\begin{aligned} & 200^{\circ} \mathrm{F} \\ & \left(93^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{F} \\ & \left(93^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 250^{\circ} \mathrm{F} \\ \left(121^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & 200^{\circ} \mathrm{F} \\ & \left(93^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 200^{\circ} \mathrm{F} \\ & \left(93^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 140^{\circ} \mathrm{F} \\ & \left(60^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 450^{\circ} \mathrm{F} \\ \left(232^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 300^{\circ} \mathrm{F} \\ \left(149^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 400^{\circ} \mathrm{F} \\ \left(204^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & 200^{\circ} \mathrm{F} \\ & \left(93^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 350^{\circ} \mathrm{F} \\ \left(177^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 350^{\circ} \mathrm{F} \\ \left(177^{\circ} \mathrm{C}\right) \end{gathered}$
Static (Shelf)		Good	Good	Good	Very Good	Good	Fair	Good	Good	----	----	Good	Good
FlexCracking Resistance		Excellent	Good	Good	Excellent	Excellent	Fair	Fair	Excellent	----	Excellent	Good	----
Compression Set Resistance		Good	Good	Very Good	Excellent	Fair	Poor	Good	Poor	Poor	Good	Good	Fair
Solvent Resistance: Aliphatic Hydrocarbon Aromatic Hydrocarbon Oxygenated Solvent Halogenated Solvent		Very Poor Very Poor Good Very Poor	Very Poor Very Poor Good Very Poor	Good Fair Poor Very Poor	Fair Poor Fair Very Poor		Excellent Good Fair Poor	Poor Very Poor Poor Very Poor	Fair Poor Poor Very Poor	Excellent Very Good Good	Very Good Fair Poor ---	Good Poor Poor Poor	Poor Fair Poor
Oil Resistance: Low Aniline Mineral Oil High Aniline Mineral Oil Synthetic Lubricants Organic Phosphates		Very Poor Very Poor Very Poor Very Poor	Very Poor Very Poor Very Poor Very Poor	Excellent Excellent Fair Very Poor	Fair Good Very Poor Very Poor	Very Poor Very Poor Poor	Excellent Excellent Poor Poor	Poor Good Fair Poor	Fair Good Poor Poor	Excellent Excellent Poor	Poor	Excellent Excellent Fair Poor	Poor Poor Poor Very Good
Gasoline Resistance: Aromatic Non-Aromatic		Very Poor Very Poor	Very Poor Very Poor	Good Excellent	Poor Good	Very Poor Very Poor	Excellent Excellent	Poor Good	Poor Fair	Good Very Good	Fair Good	Fair Poor	Fair Poor
Acid Resistance: Diluted (Under 10\%) Concentrated		$\begin{aligned} & \text { Good } \\ & \text { Fair } \end{aligned}$	Good Poor	Good Poor	Fair Fair	Good Fair	Poor Very Poor	Fair Poor	Good Good	Excellent Very Good	Fair Poor	$\begin{aligned} & \text { Poor } \\ & \text { Poor } \end{aligned}$	Very Good Good
Low Temperature Flexibility (Maximum)		$\begin{gathered} -65^{\circ} \mathrm{F} \\ \left(-54^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} -50^{\circ} \mathrm{F} \\ \left(-46^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{F} \\ \left(-40^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & -100^{\circ} \mathrm{F} \\ & \left(-73^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	$\begin{gathered} -20^{\circ} \mathrm{F} \\ \left(-29^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} -30^{\circ} \mathrm{F} \\ \left(-34^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} -40^{\circ} \mathrm{F} \\ \left(-40^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} -10^{\circ} \mathrm{F} \\ \left(-23^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & -50^{\circ} \mathrm{F} \\ & \left(-45^{\circ} \mathrm{C}\right) \end{aligned}$			
Permeability to Gases		Fair	Fair	Fair	Very Good	Very Good	Good	Fair	Very Good	Good	Good	Good	Good
Water Resistance		Good	Very Good	Very Good	Fair	Very Good	Fair	Fair	Fair	Excellent	Fair	Fair	Very Good
Alkali Resistance: Diluted (Under 10\%) Concentrated		Good Fair	Good Fair	Good Fair	Good Good	Very Good Very Good	Poor Poor	Fair Poor	Good Good	Excellent Very Good	Fair Poor	$\begin{aligned} & \text { Poor } \\ & \text { Poor } \end{aligned}$	Excellent Good
Resilience		Very Good	Fair	Fair	Very Good	Very Good	Poor	Good	Good	Good	Fair	Very Poor	Very Good
Elongation (Maximum)		700\%	500\%	500\%	500\%	700\%	400\%	300\%	300\%	425\%	625\%	200\%	500\%
1. Do not use with steam. 2. Do not use with ammonia. 3. Do not use with petroleum based fluids. Use with ester based non-flammable hydraulic oils and low pressure steam applications to $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$. 4. Except for nitric and sulfuric acid.													

TECHNICAL

Chemical Compatibility of Elastomers and Metals

Fluid Compatibility of Elastomers					
FLUID	MATERIAL				
	Neoprene (CR)	Nitrile (NBR)	Fluoroelastomer (FKM)	Ethylenepropylene (EPDM)	Perfluoroelastomer (FFKM)
Acetic Acid (30\%) Acetone Air, Ambient Air, $\operatorname{Hot}\left(200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)\right)$ Alcohol (Ethyl) Alcohol (Methyl) Ammonia (Anhydrous) (Cold)	B C A C A A A	C C A B C A A	C C A A C C C	A A A A A A A	A A A A A A A
Ammonia (Gas, Hot) Beer Benzene Brine (Calcium Chloride) Butadiene Gas Butane (Gas)	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	B A C A C C	A A A A A A
Butane (Liquid) Carbon Tetrachloride Chlorine (Dry) Chlorine (Wet) Coke Oven Gas	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Ethyl Acetate Ethylene Glycol Freon 11 Freon 12 Freon 22	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	A A A A A
Freon 114 Gasoline (Automotive) Hydrogen Gas Hydrogen Sulfide (Dry) Hydrogen Sulfide (Wet)	$\begin{aligned} & \hline \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{gathered} \hline A \\ \text { B } \\ \text { A } \\ A^{(1)} \\ C \end{gathered}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$
Jet Fuel (JP-4) Methyl Ethyl Ketone (MEK) MTBE Natural Gas	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	A C C A	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	A A A A
Nitric Acid (50 to 100\%) Nitrogen Oil (Fuel) Propane	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Sulfur Dioxide Sulfuric Acid (up to 50\%) Sulfuric Acid (50 to 100\%) Water (Ambient) Water (at $200^{\circ} \mathrm{F}\left(93^{\circ} \mathrm{C}\right)$)	A B C A C	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	A A A A B	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
1. Performance worsens with hot temperatures. A - Recommended B - Minor to moderate effect. Proceed with caution. C - Unsatisfactory N/A - Information not available					

Technical

Chemical Compatibility of Elastomers and Metals

Compatibility of Metals														
CORROSION INFORMATION														
	Material													
Fluid	Carbon Steel	Cast Iron	$\begin{gathered} \text { S302 } \\ \text { or S304 } \\ \text { Stainless } \\ \text { Steel } \end{gathered}$	S316 Stainless Steel	Bronze	Monel ${ }^{\text {® }}$	Hastelloy ${ }^{\text {B }}$ B	Hastelloy ${ }^{8}$ C	$\begin{gathered} \text { Durimet }^{8} \\ 20 \end{gathered}$	Titanium	CobaltBase Alloy 6	S416 Stainless Steel	$\begin{gathered} 440 \mathrm{C} \\ \text { Stainless } \\ \text { Steel } \end{gathered}$	17-4PH Stainless Steel
Acetaldehyde Acetic Acid, Air Free Acetic Acid, Aerated Acetic Acid Vapors Acetone	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{gathered} \text { IL } \\ \text { A } \\ \text { A } \\ \text { IL } \\ \text { A } \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \\ & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$
Acetylene Alcohols Aluminum Sulfate Ammonia Ammonium Chloride	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline \text { IL } \\ & \text { A } \\ & \text { B } \\ & \text { C } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \end{aligned}$
Ammonium Nitrate Ammonium Phosphate (Mono Basic) Ammonium Sulfate Ammonium Sulfite Aniline	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	A A B A A	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A} \\ \\ \mathrm{~A} \\ \text { IL } \\ \text { A } \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { IL } \end{aligned}$
Asphalt Beer Benzene (Benzol) Benzoic Acid Boric Acid	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \text { IL } \end{aligned}$
Butane Calcium Chloride (Alkaline) Calcium Hypochlorite Carbolic Acid Carbon Dioxide, Dry	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	IL A A A A	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{gathered} \mathrm{A} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{IL} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{C} \\ \mathrm{C} \\ \mathrm{IL} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \text { A } \end{aligned}$
Carbon Dioxide, Wet Carbon Disulfide Carbon Tetrachloride Carbonic Acid Chlorine Gas, Dry	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	A A A A A	A A A IL C	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { A } \\ & \text { C } \end{aligned}$
Chlorine Gas, Wet Chlorine, Liquid Chromic Acid Citric Acid Coke Oven Gas	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \text { IL } \\ & \mathrm{A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \\ & \text { C } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { C } \\ & \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} \hline \text { B } \\ \text { B } \\ \text { B } \\ \text { IL } \\ \text { A } \end{gathered}$	$\begin{aligned} & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$
Copper Sulfate Cottonseed Oil Creosote Ethane Ether	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Ethyl Chloride Ethylene Ethylene Glycol Ferric Chloride Formaldehyde	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \end{aligned}$
Formic Acid Freon, Wet Freon, Dry Furfural Gasoline, Refine	$\begin{aligned} & \text { IL } \\ & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	A A A A A	A A A A A	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	A A A A A	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { IL } \\ & \text { IL } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { IL } \\ & \text { IL } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \text { A } \end{aligned}$
A - Recommended B - Minor to moderate effect. Proceed with caution. C - Unsatisfactory IL - Information lacking														

- continued -

Chemical Compatibility of Elastomers and Metals

Compatibility of Metals (continued)														
CORROSION INFORMATION														
	Material													
Fluid	Carbon Steel	Cast Iron		$\begin{aligned} & \text { S316 } \\ & \text { Stainless } \\ & \text { Steel } \end{aligned}$	Bronze	Monel ${ }^{\text {® }}$	Hastelloy ${ }^{8}$ B	Hastelloy C	$\begin{gathered} \text { Durimet }^{0} \\ 20 \end{gathered}$	Titanium	Cobalt- Base Alloy 6	$\begin{gathered} \text { S416 } \\ \text { Stainless } \\ \text { Steel } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Stainless } \\ \text { Steel } \end{array}$ Steel	$\begin{gathered} \text { 17-4PH } \\ \text { Stainless } \\ \text { Steel } \end{gathered}$
Glucose Hydrochloric Acid, Aerated Hydrochloric Acid, Air free Hydrofluoric Acid, Aerated Hydrofluoric Acid, Air free	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	A C C C C	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { A } \end{aligned}$	A C C B B	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { B } \\ & \text { IL } \end{aligned}$	A C C C C	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { IL } \end{aligned}$
Hydrogen Hydrogen Peroxide Hydrogen Sufide, Liquid Magnesium Hydroxide Mercury	$\begin{aligned} & \hline \text { A } \\ & \text { IL } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline A \\ & A \end{aligned}$	$\begin{aligned} & \hline A \\ & A \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \hline A \\ & B \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	A B A A A	A A B A A	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { A } \\ & \text { A } \end{aligned}$	A B C A A	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \text { B } \end{aligned}$
Methanol Methyl Ethyl Ketone Milk Natural Gas Nitric Acid	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { B } \end{aligned}$
Oleic Acid Oxalic Acid Oxygen Petroleum Oils, Refined Phosphoric Acid, Aerated	C C A A C	$\begin{aligned} & \text { C } \\ & \text { C } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \\ & \text { LL } \end{aligned}$
Phosphoric Acid, Air Free Phosphoric Acid Vapors Picric Acid Potassium Chloride Potassium Hydroxide	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline A \\ & B \\ & A \\ & A \\ & A \\ & A \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline A \\ & A \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline B \\ & B \\ & \text { IL } \\ & A \\ & A \end{aligned}$	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{IL} \\ & \mathrm{IL} \\ & \mathrm{IL} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{C} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \end{aligned}$
Propane Rosin Silver Nitrate Sodium Acetate Sodium Carbonate	A B C A A	A B C A A	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { A } \\ & \text { A } \end{aligned}$	A A B A A	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { B } \end{aligned}$	A A IL A A
Sodium Chloride Sodium Chromate Sodium Hydroxide Sodium Hypochloride Sodium Thiosulfate	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { A } \\ \text { C } \\ \text { B-C } \\ \text { C } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { A } \\ \text { A } \\ \text { B-C } \\ \text { C } \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { IL } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { IL } \end{aligned}$
Stannous Chloride Stearic Acid Sulfate Liquor (Black) Sulfur Sulfur Dioxide, Dry	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	B C A A A	$\begin{aligned} & \hline \text { C } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline A \\ & \text { A } \\ & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { C } \\ & \text { B } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline A \\ & B \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline A \\ & A \\ & A \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline A \\ & \text { A } \\ & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \\ & \text { IL } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { C } \\ & \text { B } \\ & \text { IL } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \text { A } \\ & \text { IL } \end{aligned}$
Sulfur Trioxide, Dry Sufuric Acid (Aerated) Sufuric Acid (Air Free) Sulfurous Acid Tar	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { B } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { B } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & B \\ & B \\ & B \\ & A \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { C } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{gathered} \text { IL } \\ \text { C } \\ \text { C } \\ \text { IL } \\ \text { A } \end{gathered}$
Trichloroethylene Turpentine Vinegar Water, Boiler Feed Water, Distilled	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \\ & \text { C } \\ & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \hline \text { A } \\ & \text { A } \\ & \text { IL } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { A } \\ & \text { C } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { IL } \\ & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { IL } \end{aligned}$
Water, Sea Whiskey and Wines Zinc Chloride Zinc Sulfate	B C C C	B C C C	B A C A	B A C A	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	A B C A	A A A A	A A A A	A A A A	A A A A	A A B A	C C C B	C C C B	$\begin{aligned} & \text { A } \\ & \text { IL } \\ & \text { IL } \\ & \text { IL } \\ & \hline \end{aligned}$
A - Recommended B - Minor to moderate effect. Proceed with caution. C - Unsatisfactory IL - Information lacking														

TECHNICAL

Regulator Tips

1. All regulators should be installed and used in accordance with federal, state, and local codes and regulations.
2. Adequate overpressure protection should be installed to protect the regulator from overpressure. Adequate overpressure protection should also be installed to protect all downstream equipment in the event of regulator failure.
3. Downstream pressures significantly higher than the regulator's pressure setting may damage soft seats and other internal parts.
4. If two or more available springs have published pressure ranges that include the desired pressure setting, use the spring with the lower range for better accuracy.
5. The recommended selection for orifice diameters is the smallest orifice that will handle the flow.
6. Most regulators shown in this application guide are generally suitable for temperatures to $180^{\circ} \mathrm{F}\left(82^{\circ} \mathrm{C}\right)$. With high temperature fluoroelastomers (if available), the regulators can be used for temperatures to $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$. Check the temperature capabilities to determine materials and temperature ranges available. Use stainless steel diaphragms and seats for higher temperatures, such as steam service.
7. The full advertised range of a spring can be utilized without sacrificing performance or spring life.
8. Regulator body size should not be larger than the pipe size. In many cases, the regulator body is one size smaller than the pipe size.
9. Do not oversize regulators. Pick the smallest orifice size or regulator that will work. Keep in mind when sizing a station that most restricted trims that do not reduce the main port size do not help with improved low flow control.
10. Speed of regulator response, in order:

- Direct-operated
- Two-path pilot-operated
- Unloading pilot-operated
- Control valve

Note: Although direct-operated regulators give the fastest response, all types provide quick response.
11. When a regulator appears unable to pass the published flow rate, be sure to check the inlet pressure measured at the regulator body inlet connection. Piping up to and away from regulators can cause significant flowing pressure losses.
12. When adjusting setpoint, the regulator should be flowing at least five percent of the normal operating flow.
13. Direct-operated regulators generally have faster response to quick flow changes than pilot-operated regulators.
14. Droop is the reduction of outlet pressure experienced by pressure-reducing regulators as the flow rate increases. It is stated as a percent, in inches of water column (mbar) or in pounds per square inch (bar) and indicates the difference between the outlet pressure setting made at low flow rates and the actual outlet pressure at the published maximum flow rate. Droop is also called offset or proportional band.
15. Downstream pressure always changes to some extent when inlet pressure changes.
16. Most soft-seated regulators will maintain the pressure within reasonable limits down to zero flow. Therefore, a regulator sized for a high flow rate will usually have a turndown ratio sufficient to handle pilot-light loads during off cycles.
17. Do not undersize the monitor set. It is important to realize that the monitor regulator, even though it is wide-open, will require pressure drop for flow. Using two identical regulators in a monitor set will yield approximately 70 percent of the capacity of a single regulator.
18. Diaphragms leak a small amount due to migration of gas through the diaphragm material. To allow escape of this gas, be sure casing vents (where provided) remain open.
19. Use control lines of equal or greater size than the control tap on the regulator. If a long control line is required, make it bigger. A rule of thumb is to use the next nominal pipe size for every 20 feet $(6,1 \mathrm{~m})$ of control line. Small control lines cause a delayed response of the regulator, leading to increased chance of instability. $3 / 8$-inch $(9,5 \mathrm{~mm})$ OD tubing is the minimum recommended control line size.
20. For every 15 psid (1,0 bar d) pressure differential across the regulator, expect approximately a one degree drop in gas temperature due to the natural refrigeration effect. Freezing is often a problem when the ambient temperature is between 30° and $45^{\circ} \mathrm{F}\left(-1^{\circ}\right.$ and $\left.7^{\circ} \mathrm{C}\right)$.
21. A disk with a cookie cut appearance probably means you had an overpressure situation. Thus, investigate further.
22. When using relief valves, be sure to remember that the reseat point is lower than the start-to-bubble point. To avoid seepage, keep the relief valve setpoint far enough above the regulator setpoint.

Technical

Regulator Tips

23. Vents should be pointed down to help avoid the accumulation of water condensation or other materials in the spring case.
24. Make control line connections in a straight run of pipe about 10 pipe diameters downstream of any area of turbulence, such as elbows, pipe swages, or block valves.
25. When installing a working monitor station, get as much volume between the two regulators as possible. This will give the upstream regulator more room to control intermediate pressure.
26. Cutting the supply pressure to a pilot-operated regulator reduces the regulator gain or sensitivity and, thus, may improve regulator stability. (This can only be used with two path control.)
27. Regulators with high flows and large pressure drops generate noise. Noise can wear parts which can cause failure and/or inaccurate control. Keep regulator noise below 110 dBA .
28. Do not place control lines immediately downstream of rotary or turbine meters.
29. Keep vents open. Do not use small diameter, long vent lines. Use the rule of thumb of the next nominal pipe size every 10 feet $(3,1 \mathrm{~m})$ of vent line and 3 feet $(0,9 \mathrm{~m})$ of vent line for every elbow in the line.
30. Fixed factor measurement (or PFM) requires the regulator to maintain outlet pressure within $\pm 1 \%$ of absolute pressure. For example: Setpoint of $2 \mathrm{psig}+14.7 \mathrm{psia}=16.7 \mathrm{psiax}$ $0.01= \pm 0.167$ psi. $($ Setpoint of 0,14 bar $+1,01$ bar $=1,15$ bar x $0,01= \pm 0,0115$ bar.)
31. Regulating C_{g} (coefficient of flow) can only be used for calculating flow capacities on pilot-operated regulators. Use capacity tables or flow charts for determining a directoperated regulator's capacity.
32. Do not make the setpoints of the regulator/monitor too close together. The monitor can try to take over if the setpoints are too close, causing instability and reduction of capacity. Set them at least one proportional band apart.
33. Consider a butt-weld end regulator where available to lower costs and minimize flange leakages.
34. Do not use needle valves in control lines; use full-open valves. Needle valves can cause instability.
35. Burying regulators is not recommended. However, if you must, the vent should be protected from ground moisture and plugging.

TECHNICAL

Conversions, Equivalents, and Physical Data

Pressure Equivalents								
	KG PER SQUARE CENTIMETER	POUNDS PER SQUARE INCH	ATMOSPHERE	BAR	INCHES OF MERCURY	KILOPASCALS	INCHES OF WATER COLUMN	FEET OF WATER COLUMN
Kg per square $\mathbf{c m}$	1	14.22	0.9678	0,98067	28.96	98,067	394.05	32.84
Pounds per square inch	0,07031	1	0.06804	0,06895	2.036	6,895	27.7	2.309
Atmosphere	1,0332	14.696	1	1,01325	29.92	101,325	407.14	33.93
Bar	1,01972	14.5038	0.98692	1	29.53	100	402.156	33.513
Inches of Mercury	0,03453	0.4912	0.03342	0,033864	1	3,3864	13.61	1.134
Kilopascals	0,0101972	0.145038	0.0098696	0,01	0.2953	1	4.02156	0.33513
Inches of Water	0,002538	0.0361	0.002456	0,00249	0.07349	0,249	1	0.0833
Feet of Water	0,3045	0.4332	0.02947	0,029839	0.8819	2,9839	12	1
1 ounce per square inch $=0.0625$ pounds per square inch								

Pressure Conversion - Pounds per Square Inch to Bar ${ }^{(1)}$										
POUNDS PER	0	1	2	3	4	5	6	7	8	9
SQUARE INCH	Bar									
0	0,000	0,069	0,138	0,207	0,276	0,345	0,414	0,482	0,552	0,621
10	0,689	0,758	0,827	0,896	0,965	1,034	1,103	1,172	1,241	1,310
20	1,379	1,448	1,517	1,586	1,655	1,724*	1,793	1,862	1,931	1,999
30	2,068	2,137	2,206	2,275	2,344	2,413	2,482	2,551	2,620	2,689
40	2,758	2,827	2,896	2,965	3,034	3,103	3,172	3,241	3,309	3,378
50	3,447	3,516	3,585	3,654	3,723	3,792	3,861	3,930	3,999	4,068
60	4,137	4,275	4,275	4,344	4,413	4,482	4,551	4,619	4,688	4,758
70	4,826	4,964	4,964	5,033	5,102	5,171	5,240	5,309	5,378	5,447
80	5,516	5,585	5,654	5,723	5,792	5,861	5,929	5,998	6,067	6,136
90	6,205	6,274	6,343	6,412	6,481	6,550	6,619	6,688	6,757	6,826
100	6,895	6,964	7,033	7,102	7,171	7,239	7,308	7,377	7,446	7,515
1. To convert to kilopascals, move decimal point two positions to the right; to convert to megapascals, move decimal point one position to the left. *Note: Round off decimal points to provide no more than the desired degree of accuracy. To use this table, see the shaded example. 25 psig (20 from the left column plus five from the top row) $=1,724$ bar										

Volume Equivalents							
	CUBIC DECIMETERS (LITERS)	CUBIC INCHES	CUBIC FEET	U.S. QUART	U.S. GALLON	IMPERIAL GALLON	U.S. BARREL (PETROLEUM)
Cubic Decimeters (Liters)	1	61.0234	0.03531	1.05668	0.264178	0,220083	0.00629
Cubic Inches	0,01639	1	5.787×10^{-4}	1.01732	0.004329	0,003606	0.000103
Cubic Feet	28,317	1728	1	29.9221	7.48055	6,22888	0.1781
U.S. Quart	0,94636	57.75	0.03342	1	0.25	0,2082	0.00595
U.S. Gallon	3,78543	231	0.13368	4	1	0,833	0.02381
Imperial Gallon	4,54374	277.274	0.16054	4.80128	1.20032	1	0.02877
U.S. Barrel (Petroleum)	158,98	9702	5.6146	168	42	34,973	1
1 cubic meter $=1,000,000$ cubic centimeters 1 liter $=1000$ milliliters $=1000$ cubic centimeters							

Conversions, Equivalents, and Physical Data

Volume Rate Equivalents						
	LITERS PER MINUTE	CUBIC METERS PER HOUR	CUBIC FEET PER HOUR	LITERS PER HOUR	U.S. GALLONS PER MINUTE	U.S. BARRELS PER DAY
Liters per Minute	1	0,06	2.1189	60	0.264178	9.057
Cubic Meters per Hour	16,667	1	35.314	1000	4.403	151
Cubic Feet per Hour	0,4719	0,028317	1	28.317	0.1247	4.2746
Liters per Hour	0,016667	0,001	0.035314	1	0.004403	0.151
U.S. Gallons per Minute	3,785	0,2273	8.0208	227.3	1	34.28
U.S. Barrels per Day	0,1104	0,006624	0.23394	6.624	0.02917	1

Mass Conversion - Pounds to Kilograms										
POUNDS	0	1	2	3	4	5	6	7	8	9
	Kilograms									
0	0,00	0,45	0,91	1,36	1,81	2,27	2,72	3,18	3,63	4,08
10	4,54	4,99	5,44	5,90	6,35	6,80	7,26	7,71	8,16	8,62
20	9,07	9,53	9,98	10,43	10,89	11,34*	11,79	12,25	12,70	13,15
30	13,61	14,06	14,52	14,97	15,42	15,88	16,33	16,78	17,24	17,69
40	18,14	18,60	19,05	19,50	19,96	20,41	20,87	21,32	21,77	22,23
50	22,68	23,13	23,59	24,04	24,49	24,95	25,40	25,86	26,31	26,76
60	27,22	27,67	28,12	28,58	29,03	29,48	29,94	30,39	30,84	31,30
70	31,75	32,21	32,66	33,11	33,57	34,02	34,47	34,93	35,38	35,83
80	36,29	36,74	37,20	37,65	38,10	38,56	39,01	39,46	39,92	40,37
90	40,82	41,28	41,73	42,18	42,64	43,09	43,55	44,00	44,45	44,91
1 pound $=0,4536$ kilograms *NOTE: To use this table, see the shaded example. 25 pounds (20 from the left column plus five from the top row) $=11,34$ kilograms										

Area Equivalents					
	SQUARE METERS	SQUARE INCHES	SQUARE FEET	SQUARE MILES	SQUARE KILOMETERS
Square Meters	1	1549.99	10.7639	3.861×10^{-7}	1×10^{-6}
Square Inches	0,0006452	1	6.944×10^{-3}	2.491×10^{-10}	$6,452 \times 10^{-10}$
Square Feet	0,0929	144	1	3.587×10^{-8}	$9,29 \times 10^{-8}$
Square Miles	2589999	----	27,878,400	1	2,59
Square Kilometers	1000000	----	10,763,867	0.3861	1
1 square meter = 10000 square centimeters 1 square millimeter $=0,01$ square centimeter $=0.00155$ square inches					

Temperature Conversion Formulas		
TO CONVERT FROM	TO	SUBSTITUTE IN FORMULA
Degrees Celsius	Degrees Fahrenheit	$\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32$
Degrees Celsius	Kelvin	$\left({ }^{\circ} \mathrm{C}+273.16\right)$
Degrees Fahrenheit	Degrees Celsius	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9$
Degrees Fahrenheit	Degrees Rankine	$\left({ }^{\circ} \mathrm{F}+459.69\right)$

Kinematic-Viscosity Conversion Formulas		
VIScosity scale	RANGE OF t, SEC	KINEMATIC VISCOSITY, STROKES
Saybolt Universal	$32<t<100 t>100$	$0.00226 t-1.95 / t$ $0.00220 t-1.35 / t$
Saybolt Furol	$25<t<40 t>40$	$0.0224 t-1.84 / t$ $0.0216 t-0.60 / t$
Redwood No. 1	$34<t<100 t>100$	$0.00226 t-1.79 / t$ $0.00247 t-0.50 / t$
Redwood Admiralty	----	$0.027 t-20 / t$
Engler	----	$0.00147 t-3.74 / t$

Conversions, Equivalents, and Physical Data

Conversion Units		
MULTIPLY	BY	TO OBTAIN
Volume		
Cubic centimeter	0.06103	Cubic inches
Cubic feet	7.4805	Gallons (US)
Cubic feet	28.316	Liters
Cubic feet	1728	Cubic inches
Gallons (US)	0.1337	Cubic feet
Gallons (US)	3.785	Liters
Gallons (US)	231	Cubic inches
Liters	1.057	Quarts (US)
Liters	2.113	Pints (US)
Miscellaneous		
BTU	0.252	Calories
Decitherm	10,000	BTU
Kilogram	2.205	Pounds
Kilowatt Hour	3412	BTU
Ounces	28.35	Grams
Pounds	0.4536	Kilograms
Pounds	453.5924	Grams
Pounds	21,591	LPG BTU
Therm	100,000	BTU
API Bbls	42	Gallons (US)
Gallons of Propane	26.9	KWH
HP	746	KWH
HP (Steam)	42,418	BTU
Pressure		
Grams per square centimeter	0.0142	Pounds per square inch
Inches of mercury	0.4912	Pounds per square inch
Inches of mercury	1.133	Feet of water
Inches of water	0.0361	Pounds per square inch
Inches of water	0.0735	Inches of mercury
Inches of water	0.5781	Ounces per square inch
Inches of water	5.204	Pounds per foot
kPa	100	Bar
Kilograms per square centimeter	14.22	Pounds per square inch
Kilograms per square meter	0.2048	Pounds per square foot
Pounds per square inch	0.06804	Atmospheres
Pounds per square inch	0.07031	Kilograms per square centimeter
Pounds per square inch	0.145	KPa
Pounds per square inch	2.036	Inches of mercury
Pounds per square inch	2.307	Feet of water
Pounds per square inch	14.5	Bar
Pounds per square inch	27.67	Inches of water
Length		
Centimeters	0.3937	Inches
Feet	0.3048	Meters
Feet	30.48	Centimeters
Feet	304.8	Millimeters
Inches	2.540	Centimeters
Inches	25.40	Millimeters
Kilometer	0.6214	Miles
Meters	1.094	Yards
Meters	3.281	Feet
Meters	39.37	Inches
Miles (nautical)	1853	Meters
Miles (statute)	1609	Meters
Yards	0.9144	Meters
Yards	91.44	Centimeters

Other Useful Conversions		
TO CONVERT FROM	TO	MULTIPLY BY
Cubic feet of methane	BTU	1000 (approximate)
Cubic feet of water	Pounds of water	62.4
Degrees	Radians	0,01745
Gallons	Pounds of water	8.336
Grams	Ounces	0.0352
Horsepower (mechanical)	Foot pounds per minute	33,000
Horsepower (electrical)	Watts	746
Kg	Pounds	2.205
Kg per cubic meter	Pounds per cubic feet	0.06243
Kilowatts	Horsepower	1.341
Pounds	Kg	0,4536
Pounds of Air (14.7 psia and $60^{\circ} \mathrm{F}$)	Cubic feet of air	13.1
Pounds per cubic feet	Kg per cubic meter	16,0184
Pounds per hour (gas)	SCFH	13.1 - Specific Gravity
Pounds per hour (water)	Gallons per minute	0.002
Pounds per second (gas)	SCFH	46,160 \div Specific Gravity
Radians	Degrees	57.3
SCFH Air	SCFH Propane	0.81
SCFH Air	SCFH Butane	0.71
SCFH Air	SCFH 0.6 Natural Gas	1.29
SCFH	Cubic meters per hour	0.028317

Converting Volumes of Gas		
CFH TO CFH OR CFM TO CFM		
Multiply Flow of	By	To Obtain Flow of
Air	0.707	Butane
	1.290	Natural Gas
	0.808	Propane
Butane	1.414	Air
	1.826	Natural Gas
	1.140	Propane
Natural Gas	0.775	Air
	0.547	Butane
	0.625	Propane
Propane	1.237	Air
	0.874	Butane
	1.598	Natural Gas

Conversions, Equivalents, and Physical Data

Fractional Inches to Millimeters																
INCH	0	1/16	1/8	3/16	1/4	5/16	3/8	7/16	1/2	9/16	5/8	11/16	3/4	13/16	7/8	15/16
	mm															
0	0,0	1,6	3,2	4,8	6,4	7,9	9,5	11,1	12,7	14,3	15,9	17,5	19,1	20,6	22,2	23,8
1	25,4	27,0	28,6	30,2	31,8	33,3	34,9	36,5	38,1	39,7	41,3	42,9	44,5	46,0	47,6	49,2
2	50,8	52,4	54,0	55,6	57,2	58,7	60,3	61,9	63,5	65,1	66,7	68,3	69,9	71,4	73,0	74,6
3	76,2	77,8	79,4	81,0	82,6	84,1	85,7	87,3	88,9	90,5	92,1	93,7	95,3	96,8	98,4	100,0
4	101,6	103,2	104,8	106,4	108,0	109,5	111,1	112,7	114,3	115,9	117,5	119,1	120,7	122,2	123,8	125,4
5	127,0	128,6	130,2	131,8	133,4	134,9	136,5	138,1	139,7	141,3	142,9	144,5	146,1	147,6	149,2	150,8
6	152,4	154,0	155,6	157,2	158,8	160,3	161,9	163,5	165,1	166,7	168,3	169,9	171,5	173,0	174,6	176,2
7	177,8	179,4	181,0	182,6	184,2	185,7	187,3	188,9	190,5	192,1	193,7	195,3	196,9	198,4	200,0	201,6
8	203,2	204,8	206,4	208,0	209,6	211,1	212,7	214,3	215,9	217,5	219,1	220,7	222,3	223,8	225,4	227,0
9	228,6	230,2	231,8	233,4	235,0	236,5	238,1	239,7	241,3	242,9	244,5	246,1	247,7	249,2	250,8	252,4
10	254,0	255,6	257,2	258,8	260,4	261,9	263,5	265,1	266,7	268,3	269,9	271,5	273,1	274,6	276,2	277,8
1-inch $=25,4$ millimeters NOTE: To use this table, see the shaded example. $2-1 / 2$-inches (2 from the left column plus $1 / 2$ from the top row) $=63,5$ millimeters																

Length Equivalents						
	METERS	INCHES	FEET	MILLIMETERS	MILES	KILOMETERS
Meters	1	39.37	3.2808	1000	0.0006214	0,001
Inches	0,0254	1	0.0833	25,4	0.00001578	0,0000254
Feet	0,3048	12	1	304,8	0.0001894	0,0003048
Millimeters	0,001	0.03937	0.0032808	1	0.0000006214	0,000001
Miles	1609,35	63,360	5,280	1609350	1	1,60935
Kilometers	1000	39,370	3280.83	1000000	0.62137	1
1 meter $=100 \mathrm{~cm}=1000 \mathrm{~mm}=0,001 \mathrm{~km}=1,000,000$ micrometers						

Whole Inch-Millimeter Equivalents										
IN	0	1	2	3	4	5	6	7	8	9
INCH	mm									
0	0,00	25,4	50,8	76,2	101,6	127,0	152,4	177,8	203,2	228,6
10	254,0	279,4	304,8	330,2	355,6	381,0	406,4	431,8	457,2	482,6
20	508,0	533,4	558,8	584,2	609,6	635,0	660,4	685,8	711,2	736,6
30	762,0	787,4	812,8	838,2	863,6	889,0	914,4	939,8	965,2	990,6
40	1016,0	1041,4	1066,8	1092,2	1117,6	1143,0	1168,4	1193,8	1219,2	1244,6
50	1270,0	1295,4	1320,8	1346,2	1371,6	1397,0	1422,4	1447,8	1473,2	1498,6
60	1524,0	1549,4	1574,8	1600,2	1625,6	1651,0	1676,4	1701,8	1727,2	1752,6
70	1778,0	1803,4	1828,8	1854,2	1879,6	1905,0	1930,4	1955,8	1981,2	2006,6
80	2032,0	2057,4	2082,8	2108,2	2133,6	2159,0	2184,4	2209,8	2235,2	2260,6
90	2286,0	2311,4	2336,8	2362,2	2387,6	2413,0	2438,4	2463,8	2489,2	2514,6
100	2540,0	2565,4	2590,8	2616,2	2641,6	2667,0	2692,4	2717,8	2743,2	2768,6

Note: All values in this table are exact, based on the relation 1-inch $=25,4 \mathrm{~mm}$.
To use this table, see the shaded example.
25 -inches (20 from the left column plus five from the top row) $=635$ millimeters

Metric Prefixes and Symbols		
MULTIPLICATION FACTOR	PREFIX	SYMBOL
$1000000000000000000=10^{18}$	exa	E
$1000000000000000=10^{15}$	peta	P
$1000000000000=10^{12}$	tera	T
$1000000000=10^{9}$	giga	G
$1000000=10^{6}$	mega	M
$1000=10^{3}$	kilo	k
$100=10^{2}$	hecto	h
$10=10^{1}$	deka	da
$0.1=10^{-1}$	deci	d
$0.01=10^{-2}$	centi	c
$0.001=10^{-3}$	milli	m
$0.00001=10^{-6}$	micro	m
$0.000000001=10^{-9}$	nano	n
$0.000000000001=10^{-12}$	pico	p
$0.000000000000001=10^{-15}$	femto	f
$0.000000000000000001=10^{-18}$	atto	a

Greek Alphabet								
CAPS	LOWER CASE	GREEK NAME	CAPS	LOWER CASE	GREEK NAME	CAPS	LOWER CASE	GREEK NAME
A	α	Alpha	I	1	Iota	P	ρ	Rho
B	β	Beta	K	к	Kappa	Σ	σ	Sigma
Γ	Y	Gamma	\wedge	λ	Lambda	T	T	Tau
Δ	δ	Delta	M	μ	Mu	Y	u	Upsilon
E	ε	Epsilon	N	v	Nu	Ф	φ	Phi
Z	ζ	Zeta	三	ξ	Xi	X	X	Chi
H	η	Eta	0	\bigcirc	Omicron	Ψ	Ψ	Psi
\bigcirc	θ	Theta	\square	π	Pi	Ω	ω	Omega

TECHNICAL

Conversions, Equivalents, and Physical Data

Length Equivalents - Fractional and Decimal Inches to Millimeters											
INCHES		mm									
Fractions	Decimals		Fractions	Decimals		Fractions	Decimals		Fractions	Decimals	
	0.00394	0.1		0.23	5.842	1/2	0.50	12.7		0.77	19.558
	0.00787	0.2	15/64	0.234375	5.9531		0.51	12.954		0.78	19.812
	0.01	0.254		0.23622	6.0		0.51181	13.0	25/32	0.78125	19.8438
	0.01181	0.3		0.24	6.096	33/64	0.515625	13.0969		0.78740	20.0
1/64	0.015625	0.3969	1/4	0.25	6.35		0.52	13.208		0.79	20.066
	0.01575	0.4		0.26	6.604		0.53	13.462	51/64	0.796875	20.2406
	0.01969	0.5	17/64	0.265625	6.7469	17/32	0.53125	13.4938		0.80	20.320
	0.02	0.508		0.27	6.858		0.54	13.716		0.81	20.574
	0.02362	0.6		0.27559	7.0	35/64	0.546875	13.8906	13/64	0.8125	20.6375
	0.02756	0.7		0.28	7.112		0.55	13.970		0.82	20.828
	0.03	0.762	9/32	0.28125	7.1438		0.55118	14.0		0.82677	21.0
1/32	0.03125	0.7938		0.29	7.366		0.56	14.224	53/64	0.828125	21.0344
	0.0315	0.8	19/64	0.296875	7.5406	9/16	0.5625	14.2875		0.83	21.082
	0.13543	0.9		0.30	7.62		0.57	14.478		0.84	21.336
	0.03937	1.0		0.31	7.874	37/64	0.578125	14.6844	27/32	0.84375	21.4312
	0.04	1.016	5/16	0.3125	7.9375		0.58	14.732		0.85	21.590
3/64	0.046875	1.1906		0.31496	8.0		0.59	14.986	55/64	0.859375	21.8281
	0.05	1.27		0.32	8.128		0.5905	15.0		0.86	21.844
	0.06	1.524	21/64	0.328125	8.3344	19/32	0.59375	15.0812		0.86614	22.0
1/16	0.0625	1.5875		0.33	8.382		0.60	15.24		0.87	22.098
	0.07	1.778		0.34	8.636	39/64	0.609375	15.4781	7/8	0.875	22.225
5/64	0.078125	1.9844	11/32	0.34375	8.7312		0.61	15.494		0.88	22.352
	0.07874	2.0		0.35	8.89		0.62	15.748		0.89	22.606
	0.08	2.032		0.35433	9.0	5/8	0.625	15.875	57/64	0.890625	22.6219
	0.09	2.286	23/64	0.359375	9.1281		0.62992	16.0		0.90	22.860
3/32	0.09375	2.3812		0.36	9.144		0.63	16.002		0.90551	23.0
	0.1	2.54		0.37	9.398		0.64	16.256	29/32	0.90625	23.0188
7/64	0.109375	2.7781	3/8	0.375	9.525	41/64	0.640625	16.2719		0.91	23.114
	0.11	2.794		0.38	9.652		0.65	16.510		0.92	23.368
	0.11811	3.0		0.39	9.906	21/32	0.65625	16.6688	59/64	0.921875	23.1456
	0.12	3.048	25/64	0.390625	9.9219		0.66	16.764		0.93	23.622
1/8	0.125	3.175		0.39370	10.0		0.66929	17.0	15/16	0.9375	23.8125
	0.13	3.302		0.40	10.16		0.67	17.018		0.94	23.876
	0.14	3.556	13/32	0.40625	10.3188	43/64	0.671875	17.0656		0.94488	24.0
9/64	0.140625	3.5719		0.41	10.414		0.68	17.272		0.95	24.130
	0.15	3.810		0.42	10.668	11/16	0.6875	17.4625	61/64	0.953125	24.2094
5/32	0.15625	3.9688	27/64	0.421875	10.7156		0.69	17.526		0.96	24.384
	0.15748	4.0		0.43	10.922		0.70	17.78	31/32	0.96875	24.6062
	0.16	4.064		0.43307	11.0	45/64	0.703125	17.8594		0.97	24.638
	0.17	4.318	7/16	0.4375	11.1125		0.70866	18.0		0.98	24.892
11/64	0.171875	4.3656		0.44	11.176		0.71	18.034		0.98425	25.0
	0.18	4.572		0.45	11.430	23/32	0.71875	18.2562	63/64	0.984375	25.0031
3/16	0.1875	4.7625	29/64	0.453125	11.5094		0.72	18.288		0.99	25.146
	0.19	4.826		0.46	11.684		0.73	18.542	1	1.00000	25.4000
	0.19685	5.0	15/32	0.46875	11.9062	47/64	0.734375	18.6531			
	0.2	5.08		0.47	11.938		0.74	18.796			
13/64	0.203125	5.1594		0.47244	12.0		0.74803	19.0			
	0.21	5.334		0.48	12.192	3/4	0.75	19.050			
7/32	0.21875	5.5562	31/64	0.484375	12.3031		0.76	19.304			
	0.22	5.588		0.49	12.446	49/64	0.765625	19.4469			
Note: Round off decimal points to provide no more than the desired degree of accuracy.											

TECHNICAL

Conversions, Equivalents, and Physical Data

Temperature Conversions											
${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ}$ F TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ}{ }^{\circ}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ}{ }^{\circ}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$
-273,16	-460	-796	-90,00	-130	-202.0	-17,8	0	32.0	21,1	70	158.0
-267,78	-450	-778	-84,44	-120	-184.0	-16,7	2	35.6	22,2	72	161.6
-262,22	-440	-760	-78,89	-110	-166.0	-15,6	4	39.2	23,3	74	165.2
-256,67	-430	-742	-73,33	-100	-148.0	-14,4	6	42.8	24,4	76	168.8
-251,11	-420	-724	-70,56	-95	-139.0	-13,3	8	46.4	25,6	78	172.4
-245,56	-410	-706	-67,78	-90	-130.0	-12,2	10	50.0	26,7	80	176.0
-240,00	-400	-688	-65,00	-85	-121.0	-11,1	12	53.6	27,8	82	179.6
-234,44	-390	-670	-62,22	-80	-112.0	-10,0	14	57.2	28,9	84	183.2
-228,89	-380	-652	-59,45	-75	-103.0	-8,89	16	60.8	30,0	86	186.8
-223,33	-370	-634	-56,67	-70	-94.0	-7,78	18	64.4	31,1	88	190.4
-217,78	-360	-616	-53,89	-65	-85	-6,67	20	68.0	32,2	90	194.0
-212,22	-350	-598	-51,11	-60	-76.0	-5,56	22	71.6	33,3	92	197.6
-206,67	-340	-580	-48,34	-55	-67.0	-4,44	24	75.2	34,4	94	201.2
-201,11	-330	-562	-45,56	-50	-58.0	-3,33	26	78.8	35,6	96	204.8
-195,56	-320	-544	-42,78	-45	-49.0	-2,22	28	82.4	36,7	98	208.4
-190,00	-310	-526	-40,00	-40	-40.0	-1,11	30	86.0	37,8	100	212.0
-184,44	-300	-508	-38,89	-38	-36.4	0	32	89.6	43,3	110	230.0
-178,89	-290	-490	-37,78	-36	-32.8	1,11	34	93.2	48,9	120	248.0
-173,33	-280	-472	-36,67	-34	-29.2	2,22	36	96.8	54,4	130	266.0
-169,53	-273	-459.4	-35,56	-32	-25.6	3,33	38	100.4	60,0	140	284.0
-168,89	-272	-457.6	-34,44	-30	-22.0	4,44	40	104.0	65,6	150	302.0
-167,78	-270	-454.0	-33,33	-28	-18.4	5,56	42	107.6	71,1	160	320.0
-162,22	-260	-436.0	-32,22	-26	-14.8	6,67	44	111.2	76,7	170	338.0
-156,67	-250	-418.0	-31,11	-24	-11.2	7,78	46	114.8	82,2	180	356.0
-151,11	-240	-400.0	-30,00	-22	-7.6	8,89	48	118.4	87,8	190	374.0
-145,56	-230	-382.0	-28,89	-20	-4.0	10,0	50	122.0	93,3	200	392.0
-140,00	-220	-364.0	-27,78	-18	-0.4	11,1	52	125.6	98,9	210	410.0
-134,44	-210	-356.0	-26,67	-16	3.2	12,2	54	129.2	104,4	220	428.0
-128,89	-200	-328.0	-25,56	-14	6.8	13,3	56	132.8	110,0	230	446.0
-123,33	-190	-310.0	-24,44	-12	10.4	14,4	58	136.4	115,6	240	464.0
-117,78	-180	-292.0	-23,33	-10	14.0	15,6	60	140.0	121,1	250	482.0
-112,22	-170	-274.0	-22,22	-8	17.6	16,7	62	143.6	126,7	260	500.0
-106,67	-160	-256.0	-21,11	-6	21.2	17,8	64	147.2	132,2	270	518.0
-101,11	-150	-238.0	-20,00	-4	24.8	18,9	66	150.8	137,8	280	536.0
-95,56	-140	-220.0	-18,89	-2	28.4	20,0	68	154.4	143,3	290	665.0

-continued-

TECHNICAL

Conversions, Equivalents, and Physical Data

Temperature Conversions (continued)								
${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ}{ }^{\circ}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ}$ F TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$
21,1	70	158.0	204,4	400	752.0	454,0	850	1562.0
22,2	72	161.6	210,0	410	770.0	460,0	860	1580.0
23,3	74	165.2	215,6	420	788.0	465,6	870	1598.0
24,4	76	168.8	221,1	430	806.0	471,1	880	1616.0
25,6	78	172.4	226,7	440	824.0	476,7	890	1634.0
26,7	80	176.0	232,2	450	842.0	482,2	900	1652.0
27,8	82	179.6	237,8	460	860.0	487,8	910	1670.0
28,9	84	183.2	243,3	470	878.0	493,3	920	1688.0
30,0	86	186.8	248,9	480	896.0	498,9	930	1706.0
31,1	88	190.4	254,4	490	914.0	504,4	940	1724.0
32,2	90	194.0	260,0	500	932.0	510,0	950	1742.0
33,3	92	197.6	265,6	510	950.0	515,6	960	1760.0
34,4	94	201.2	271,1	520	968.0	521,1	970	1778.0
35,6	96	204.8	276,7	530	986.0	526,7	980	1796.0
36,7	98	208.4	282,2	540	1004.0	532,2	990	1814.0
37,8	100	212.0	287,8	550	1022.0	537,8	1000	1832.0
43,3	110	230.0	293,3	560	1040.0	543,3	1010	1850.0
48,9	120	248.0	298,9	570	1058.0	548,9	1020	1868.0
54,4	130	266.0	304,4	580	1076.0	554,4	1030	1886.0
60,0	140	284.0	310,0	590	1094.0	560,0	1040	1904.0
65,6	150	302.0	315,6	600	1112.0	565,6	1050	1922.0
71,1	160	320.0	321,1	610	1130.0	571,1	1060	1940.0
76,7	170	338.0	326,7	620	1148.0	576,7	1070	1958.0
82,2	180	356.0	332,2	630	1166.0	582,2	1080	1976.0
87,8	190	374.0	337,8	640	1184.0	587,8	1090	1994.0
93,3	200	392.0	343,3	650	1202.0	593,3	1100	2012.0
98,9	210	410.0	348,9	660	1220.0	598,9	1110	2030.0
104,4	220	428.0	354,4	670	1238.0	604,4	1120	2048.0
110,0	230	446.0	360,0	680	1256.0	610,0	1130	2066.0
115,6	240	464.0	365,6	690	1274.0	615,6	1140	2084.0
121,1	250	482.0	371,1	700	1292.0	621,1	1150	2102.0
126,7	260	500.0	376,7	710	1310.0	626,7	1160	2120.0
132,2	270	518.0	382,2	720	1328.0	632,2	1170	2138.0
137,8	280	536.0	287,8	730	1346.0	637,8	1180	2156.0
143,3	290	665.0	393,3	740	1364.0	643,3	1190	2174.0

-continued-

Technical

Conversions, Equivalents, and Physical Data

Temperature Conversions (continued)											
${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	TEMP. IN ${ }^{\circ} \mathrm{C}$ OR ${ }^{\circ} \mathrm{F}$ TO BE CONVERTED	${ }^{\circ} \mathrm{F}$
148,9	300	572.0	315,6	600	1112.0	482,2	900	1652.0	648,9	1200	2192.0
154,4	310	590.0	321,1	610	1130.0	487,8	910	1670.0	654,4	1210	2210.0
160,0	320	608.0	326,7	620	1148.0	493,3	920	1688.0	660,0	1220	2228.0
165,6	330	626.0	332,2	630	1166.0	498,9	930	1706.0	665,6	1230	2246.0
171,1	340	644.0	337,8	640	1184.0	504,4	940	1724.0	671,1	1240	2264.0
176,7	350	662.0	343,3	650	1202.0	510,0	950	1742.0	676,7	1250	2282.0
182,2	360	680.0	348,9	660	1220.0	515,6	960	1760.0	682,2	1260	2300.0
187,8	370	698.0	354,4	670	1238.0	521,1	970	1778.0	687,8	1270	2318.0
189,9	380	716.0	360,0	680	1256.0	526,7	980	1796.0	693,3	1280	2336.0
193,3	390	734.0	365,6	690	1274.0	532,2	990	1814.0	698,9	1290	2354.0
204,4	400	752.0	371,1	700	1292.0	537,8	1000	1832.0	704,4	1300	2372.0
210,0	410	770.0	376,7	710	1310.0	543,3	1010	1850.0	710,0	1310	2390.0
215,6	420	788.0	382,2	720	1328.0	548,9	1020	1868.0	715,6	1320	2408.0
221,1	430	806.0	287,8	730	1346.0	554,4	1030	1886.0	721,1	1330	2426.0
226,7	440	824.0	393,3	740	1364.0	560,0	1040	1904.0	726,7	1340	2444.0
232,2	450	842.0	398,9	750	1382.0	565,6	1050	1922.0	732,2	1350	2462.0
237,8	460	860.0	404,4	760	1400.0	571,1	1060	1940.0	737,8	1360	2480.0
243,3	470	878.0	410,0	770	1418.0	576,7	1070	1958.0	743,3	1370	2498.0
248,9	480	896.0	415,6	780	1436.0	582,2	1080	1976.0	748,9	1380	2516.0
254,4	490	914.0	421,1	790	1454.0	587,8	1090	1994.0	754,4	1390	2534.0
260,0	500	932.0	426,7	800	1472.0	593,3	1100	2012.0	760,0	1400	2552.0
265,6	510	950.0	432,2	810	1490.0	598,9	1110	2030.0	765,6	1410	2570.0
271,1	520	968.0	437,8	820	1508.0	604,4	1120	2048.0	771,1	1420	2588.0
276,7	530	986.0	443,3	830	1526.0	610,0	1130	2066.0	776,7	1430	2606.0
282,2	540	1004.0	448,9	840	1544.0	615,6	1140	2084.0	782,2	1440	2624.0
287,8	550	1022.0	454,4	850	1562.0	621,1	1150	2102.0	787,0	1450	2642.0
293,3	560	1040.0	460,0	860	1580.0	626,7	1160	2120.0	793,3	1460	2660.0
298,9	570	1058.0	465,6	870	1598.0	632,2	1170	2138.0	798,9	1470	2678.0
304,4	580	1076.0	471,1	880	1616.0	637,8	1180	2156.0	804,4	1480	2696.0
310,0	590	1094.0	476,7	890	1634.0	643,3	1190	2174.0	810,0	1490	2714.0

TECHNICAL

Conversions, Equivalents, and Physical Data

A.P.I. and Baumé Gravity Tables and Weight Factors																			
$\begin{aligned} & \text { A.P.I. } \\ & \text { Gravity } \end{aligned}$	Baumé Gravity	Specific Gravity	Lbs/U.S. Gallons	$\begin{array}{\|c\|} \hline \text { U.S. } \\ \text { Gallons- } \\ \text { /Lb } \end{array}$	$\begin{gathered} \text { A.P.I. } \\ \text { Gravity } \end{gathered}$	Baumé Gravity	Specific Gravity	Lbs/U.S. Gallons	$\begin{array}{\|c\|} \hline \text { U.S. } \\ \text { Gallons- } \\ \text { /Lb } \end{array}$	$\begin{gathered} \text { A.P.I. } \\ \text { Gravity } \end{gathered}$	Baumé Gravity	Specific Gravity	Lbs/U.S. Gallons	U.S. Gallons/Lb	$\begin{aligned} & \text { A.P.I. } \\ & \text { Gravity } \end{aligned}$	Baumé Gravity	Specific Gravity	Lbs/U.S Gallons	$\begin{gathered} \text { U.S. } \\ \text { Gallons- } \\ \hline \end{gathered}$
0	10.247	1.0760	8.962	0.1116											----				
1	9.223	1.0679	8.895	0.1124	31	30.78	0.9808	7.251	0.1379	61	60.46	0.7351	6.119	0.1634	81	80.25	0.6659	5.542	0.1804
2	8.198	1.0599	8.828	0.1133	32	31.77	0.8654	7.206	0.1388	62	61.45	0.7313	6.087	0.1643	82	81.24	0.6628	5.516	0.1813
3	7.173	1.0520	8.762	0.1141	33	32.76	0.8602	7.163	0.1396	63	62.44	0.7275	6.056	0.1651	83	82.23	0.6597	5.491	0.1821
4	6.148	1.0443	8.698	0.1150	34	33.75	0.8550	7.119	0.1405	64	63.43	0.7238	6.025	0.1660	84	83.22	0.6566	5.465	0.1830
5	5.124	1.0366	8.634	0.1158	35	34.73	0.8498	7.075	0.1413	65	64.42	0.7201	6.994	0.1668	85	84.20	0.6536	5.440	0.1838
6	4.099	1.0291	8.571	0.1167	36	35.72	0.8448	7.034	0.1422	66	65.41	0.7165	5.964	0.1677	86	85.19	0.6506	5.415	0.1847
7	3.074	1.0217	8.509	0.1175	37	36.71	0.8398	6.993	0.1430	67	66.40	0.7128	5.934	0.1685	87	86.18	0.6476	5.390	0.1855
8	2.049	1.0143	8.448	0.1184	38	37.70	0.8348	6.951	0.1439	68	67.39	0.7093	5.904	0.1694	88	87.17	0.6446	5.365	0.1864
9	1.025	1.0071	8.388	0.1192	39	38.69	0.8299	6.910	0.1447	69	68.37	0.7057	5.874	0.1702	89	88.16	0.6417	5.341	0.1872
10	10.00	1.0000	8.328	0.1201	40	39.68	0.8251	6.870	0.1456	70	69.36	0.7022	5.845	0.1711	90	89.15	0.6388	5.316	0.1881
11	10.99	0.9930	8.270	0.1209	41	40.67	0.8203	6.830	0.1464	71	70.35	0.6988	5.817	0.1719	91	90.14	0.6360	5.293	0.1889
12	11.98	0.9861	8.212	0.1218	42	41.66	0.8155	6.790	0.1473	72	71.34	0.6953	5.788	0.1728	92	91.13	0.6331	5.269	0.1898
13	12.97	0.9792	8.155	0.1226	43	42.65	0.8109	6.752	0.1481	73	72.33	0.6919	5.759	0.1736	93	92.12	0.6303	5.246	0.1906
14	13.96	0.9725	8.099	0.1235	44	43.64	0.8063	6.713	0.1490	74	73.32	0.6886	5.731	0.1745	94	93.11	0.6275	5.222	0.1915
15	14.95	0.9659	8.044	0.1243	45	44.63	0.8017	6.675	0.1498	75	74.31	0.6852	5.703	0.1753	95	94.10	0.6247	5.199	0.1924
16	15.94	0.9593	7.989	0.1252	46	45.62	0.7972	6.637	0.1507	76	75.30	0.6819	5.676	0.1762	96	95.09	0.6220	5.176	0.1932
17	16.93	0.9529	7.935	0.1260	47	50.61	0.7927	6.600	0.1515	77	76.29	0.6787	5.649	0.1770	97	96.08	0.6193	5.154	0.1940
18	17.92	0.9465	7.882	0.1269	48	50.60	0.7883	6.563	0.1524	78	77.28	0.6754	5.622	0.1779	98	97.07	0.6166	5.131	0.1949
19	18.90	0.9402	7.930	0.1277	49	50.59	0.7839	6.526	0.1532	79	78.27	0.6722	5.595	0.1787	99	98.06	0.6139	5.109	0.1957
20	19.89	0.9340	7.778	0.1286	50	50.58	0.7796	6.490	0.1541	80	79.26	0.6690	5.568	0.1796	100	99.05	0.6112	5.086	0.1966
										The relation of degrees Baume or A.P.I. to Specific Gravity is expressed by these formulas: For liquids lighter than water: For liquids heavier than water:									
21	20.88	0.9279	7.727	0.1294	51	50.57	0.7753	6.455	0.1549										
22	21.87	0.9218	7.676	0.1303	52	51.55	0.7711	6.420	0.1558	Degrees Baume $=\frac{140}{\mathrm{G}} \cdot 130 \mathrm{G}=\frac{140}{130+\text { Degrees Baume }} \quad$ Degrees Baume $=145 \cdot \frac{145}{5} \mathrm{G}=\frac{145}{145-\text { Degrees Baume }}$									
23	22.86	0.9159	7.627	0.1311	53	52.54	0.7669	6.385	0.1566	Degrees A.P.I. $=\frac{141}{5}-131.5 \mathrm{G}=\frac{141.5}{131.5+\text { degrees A.P. }}$.									
24	23.85	0.9100	7.578	0.1320	54	53.53	0.7628	6.350	0.1575	$\mathrm{G}=$ Specific Gravity $=$ ratio of weight of a given volume of oil at $60^{\circ} \mathrm{F}$ to the weight of the same volume of water at $60^{\circ} \mathrm{F}$.									
25	24.84	0.9042	7.529	0.1328	55	54.52	0.7587	6.136	0.1583	The above tables are based on the weight of 1 gallon (U.S.) of oil with a volume of 231 cubic inches at $60^{\circ} \mathrm{F}$ in air at 760 mm pressure and 50% relative humidity. Assumed weight of 1 gallon of water at $60^{\circ} \mathrm{F}$ in air is 8.32828 pounds.									
26	25.83	0.8984	7.481	0.1337	56	55.51	0.7547	6.283	0.1592	To determine the resulting gravity by mixing oils of different gravities:$\mathrm{D}=\frac{\mathrm{md} \mathrm{~m}_{1}+\mathrm{md}}{\mathrm{~m}+\mathrm{n}}$									
27	26.82	0.8927	7.434	0.1345	57	56.50	0.7507	6.249	0.1600										
28	27.81	0.8871	7.387	0.1354	58	57.49	0.7467	6.216	0.1609	D = Density or Specific Gravity of mixture $\mathrm{m}=$ Proportion of oil of d_{1} density									
29	28.80	0.8816	7.341	0.1362	59	58.48	0.7428	6.184	0.1617	$\mathrm{n}=$ Proportion of oil of d_{2} density $d_{1}=$ Specific gravity of m oil									
30	29.79	0.8762	7.296	0.1371	60	59.47	0.7389	6.151	0.1626	$\mathrm{d}_{2}=$ Specific gravity of n oil									

Conversions, Equivalents, and Physical Data

Characteristics of the Elements											
ELEMENT	SYMBOL	ATOMIC NUMBER	MASS NUMBER ${ }^{(1)}$	MELTING POINT (${ }^{\circ} \mathrm{C}$)	BOILING POINT (${ }^{\circ} \mathrm{C}$)	ELEMENT	SYMBOL	ATOMIC NUMBER	MASS NUMBER ${ }^{(1)}$	MELTING POINT (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { BOILING } \\ & \text { POINT }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$
Actinium Aluminum Americum Antimony (Stibium) Argon	Ac Al Am Sb Ar	$\begin{aligned} & 89 \\ & 13 \\ & 95 \\ & 51 \\ & 18 \end{aligned}$	$\begin{gathered} (227) \\ 27 \\ (243) \\ 121 \\ \\ 40 \end{gathered}$	$1600 \dagger$ 659.7 630.5 -189.2	$\begin{gathered} 2057 \\ 1380 \\ -185.7 \end{gathered}$	Neon Neptunium Nickel Niobium Nitrogen	Ne Np Ni Nb N	$\begin{aligned} & 10 \\ & 93 \\ & 28 \\ & 41 \\ & 7 \end{aligned}$	$\begin{gathered} \hline 20 \\ (237) \\ 58 \\ 93 \\ 14 \end{gathered}$	$\begin{gathered} -248.67 \\ 1455 \\ 2500 \pm 50 \\ -209.86 \end{gathered}$	$\begin{gathered} -245.9 \\ 2900 \\ 3700 \\ -195.8 \end{gathered}$
Arsenic Astatine Barium Berkelium Beryllium	As At Ba Bk Be	$\begin{gathered} \hline 33 \\ 85 \\ 56 \\ 97 \\ 4 \end{gathered}$	$\begin{gathered} \hline 75 \\ (210) \\ 138 \\ (247) \\ 9 \end{gathered}$	sublimes at 615 850 1278 ± 5	$\begin{gathered} \text { sublimes at } 615 \\ 1140 \\ 2970 \end{gathered}$	Nobelium Osmium Oxygen Palladium Phosphorus	$\begin{aligned} & \text { No } \\ & \text { Os } \\ & \text { O } \\ & \text { Pd } \\ & \text { P } \end{aligned}$	$\begin{gathered} 102 \\ 76 \\ 8 \\ 46 \\ 15 \end{gathered}$	$\begin{gathered} (253) \\ 192 \\ 16 \\ 106 \\ 31 \end{gathered}$	$\begin{gathered} 2700 \\ -218.4 \\ 1549.4 \end{gathered}$	$\begin{gathered} >5300 \\ -182.86 \\ 2000 \end{gathered}$
Bismuth Boron Bromine Cadmium Calcium	$\begin{aligned} & \mathrm{Bi} \\ & \mathrm{~B} \\ & \mathrm{Br} \\ & \mathrm{Cd} \\ & \mathrm{Ca} \end{aligned}$	$\begin{gathered} 83 \\ 5 \\ 35 \\ 48 \\ 20 \end{gathered}$	$\begin{gathered} 209 \\ 11 \\ 79 \\ 114 \\ 40 \end{gathered}$	$\begin{gathered} 271.3 \\ 2300 \\ -7.2 \\ 320.9 \\ 842 \pm 8 \end{gathered}$	$\begin{gathered} 1560 \pm 5 \\ 2550 \\ 58.78 \\ 767 \pm 2 \\ 1240 \end{gathered}$	Platinum Plutonium Polonium Potassium Praseodymium	$\begin{aligned} & \mathrm{Pt} \\ & \mathrm{Pu} \\ & \mathrm{Po} \\ & \mathrm{~K} \\ & \mathrm{Kr} \end{aligned}$	$\begin{aligned} & 78 \\ & 94 \\ & 84 \\ & 19 \\ & 59 \end{aligned}$	$\begin{gathered} 195 \\ (242) \\ (209) \\ 39 \\ 141 \end{gathered}$	$\begin{gathered} 1773.5 \\ \\ 53.3 \\ 940 \end{gathered}$	$\begin{aligned} & 4300 \\ & 760 \end{aligned}$
Californium Carbon Cerium Cesium Chlorine	$\begin{aligned} & \hline \mathrm{Cf} \\ & \mathrm{C} \\ & \mathrm{Ce} \\ & \mathrm{Cs} \\ & \mathrm{Cl} \end{aligned}$	$\begin{gathered} \hline 98 \\ 6 \\ 58 \\ 55 \\ 17 \end{gathered}$	$\begin{gathered} \hline(249) \\ 12 \\ 140 \\ 133 \\ 35 \end{gathered}$	$\begin{gathered} >3550 \\ 804 \\ 28.5 \\ -103 \pm 5 \end{gathered}$	$\begin{gathered} 4200 \\ 1400 \\ 670 \\ -34.6 \end{gathered}$	Promethium Protactinium Radium Radon Rhenium	$\begin{aligned} & \mathrm{Pm} \\ & \mathrm{~Pa} \\ & \mathrm{Ra} \\ & \mathrm{Rn} \\ & \mathrm{Re} \end{aligned}$	$\begin{aligned} & 61 \\ & 91 \\ & 88 \\ & 86 \\ & 75 \end{aligned}$	$\begin{aligned} & (145) \\ & (231) \\ & (226) \\ & (222) \\ & 187 \end{aligned}$	$\begin{gathered} 700 \\ -71 \\ 3167 \pm 60 \end{gathered}$	$\begin{aligned} & 1140 \\ & -61.8 \end{aligned}$
Chromium Cobalt Copper Curium Dysprosium	$\begin{aligned} & \mathrm{Cr} \\ & \mathrm{Co} \\ & \mathrm{Cu} \\ & \mathrm{Cm} \\ & \mathrm{Dy} \end{aligned}$	$\begin{aligned} & 24 \\ & 27 \\ & 29 \\ & 96 \\ & 66 \end{aligned}$	$\begin{gathered} 52 \\ 59 \\ 63 \\ (248) \\ 164 \end{gathered}$	$\begin{aligned} & 1890 \\ & 1495 \\ & 1083 \end{aligned}$	$\begin{aligned} & 2480 \\ & 2900 \\ & 2336 \end{aligned}$	Rhodium Rubidium Ruthenium Samarium Scandium	$\begin{aligned} & \mathrm{Rh} \\ & \mathrm{Rb} \\ & \mathrm{Ru} \\ & \mathrm{Sm} \\ & \mathrm{Sc} \end{aligned}$	$\begin{aligned} & 45 \\ & 37 \\ & 44 \\ & 62 \\ & 21 \end{aligned}$	$\begin{gathered} \hline 103 \\ 85 \\ 102 \\ 152 \\ 45 \end{gathered}$	$\begin{gathered} 1966 \pm 3 \\ 38.5 \\ 2450 \\ >1300 \\ 1200 \end{gathered}$	$\begin{gathered} >2500 \\ 700 \\ 2700 \\ 2400 \end{gathered}$
Einsteinium Erbium Europium Fermium Fluourine	$\begin{aligned} & \mathrm{Es} \\ & \mathrm{Er} \\ & \mathrm{Eu} \\ & \mathrm{Fm} \\ & \mathrm{~F} \end{aligned}$	$\begin{gathered} 99 \\ 68 \\ 63 \\ 100 \\ 9 \end{gathered}$	$\begin{gathered} (254) \\ 166 \\ 153 \\ (252) \\ 19 \end{gathered}$	$\begin{gathered} 1150 \pm 50 \\ -223 \end{gathered}$	-188	Selenium Silicon Silver Sodium Strontium	$\begin{aligned} & \mathrm{Se} \\ & \mathrm{Si} \\ & \mathrm{Ag} \\ & \mathrm{Na} \\ & \mathrm{Sr} \end{aligned}$	$\begin{aligned} & 34 \\ & 14 \\ & 47 \\ & 11 \\ & 38 \end{aligned}$	$\begin{gathered} 80 \\ 28 \\ 107 \\ 23 \\ 88 \end{gathered}$	$\begin{gathered} 217 \\ 1420 \\ 960.8 \\ 97.5 \\ 800 \end{gathered}$	$\begin{gathered} \hline 688 \\ 2355 \\ 1950 \\ 880 \\ 1150 \end{gathered}$
Francium Gadolinium Gallium Germanium Gold	Fr Gd Ga Ge Au	$\begin{aligned} & 87 \\ & 64 \\ & 31 \\ & 32 \\ & 79 \end{aligned}$	$\begin{gathered} \hline(223) \\ 158 \\ 69 \\ 74 \\ 197 \end{gathered}$	$\begin{aligned} & 29.78 \\ & 958.5 \\ & 1063 \end{aligned}$	$\begin{aligned} & 1983 \\ & 2700 \\ & 2600 \end{aligned}$	Sulfur Tantalum Technetium Tellurium Terbium	$\begin{aligned} & \mathrm{S} \\ & \mathrm{Ta} \\ & \mathrm{Tc} \\ & \mathrm{Te} \\ & \mathrm{~Tb} \end{aligned}$	$\begin{aligned} & 16 \\ & 73 \\ & 43 \\ & 52 \\ & 65 \end{aligned}$	$\begin{gathered} 32 \\ 180 \\ (99) \\ 130 \\ 159 \end{gathered}$	$\begin{gathered} 2996 \pm 50 \\ 452 \\ 327 \pm 5 \end{gathered}$	$\begin{gathered} \mathrm{c} .4100 \\ 1390 \end{gathered}$
Hafnium Helium Holmium Hydrogen Indium	$\begin{aligned} & \mathrm{Hf} \\ & \mathrm{He} \\ & \mathrm{Ho} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{gathered} 72 \\ 2 \\ 67 \\ 1 \\ 49 \end{gathered}$	$\begin{gathered} 180 \\ 4 \\ 165 \\ 1 \\ 115 \end{gathered}$	$\begin{gathered} 1700^{(2)} \\ -272 \\ -259.14 \\ 156.4 \end{gathered}$	$\begin{gathered} >3200 \\ -268.9 \\ -252.8 \\ 2000 \pm 10 \end{gathered}$	Thallium Thorium Thulium Tin Titanium	$\begin{aligned} & \mathrm{Tl} \\ & \mathrm{Th} \\ & \mathrm{Tm} \\ & \mathrm{Sn} \\ & \mathrm{Ti} \end{aligned}$	$\begin{aligned} & 81 \\ & 90 \\ & 69 \\ & 50 \\ & 22 \end{aligned}$	$\begin{gathered} \hline 205 \\ 232 \\ 169 \\ 120 \\ 48 \end{gathered}$	$\begin{gathered} 302 \\ 1845 \\ 231.89 \\ 1800 \end{gathered}$	$\begin{gathered} 1457 \pm 10 \\ 4500 \\ 2270 \\ >3000 \end{gathered}$
Iodine Iridium Iron Krypton Lanthanum	$\begin{aligned} & \mathrm{I} \\ & \mathrm{Ir} \\ & \mathrm{Fe} \\ & \mathrm{Fe} \\ & \mathrm{Kr} \\ & \mathrm{La} \end{aligned}$	$\begin{aligned} & 53 \\ & \\ & 77 \\ & 26 \\ & 36 \\ & 57 \end{aligned}$	$\begin{gathered} \hline 127 \\ 193 \\ 56 \\ 84 \\ 139 \end{gathered}$	$\begin{gathered} 113.7 \\ 2454 \\ 1535 \\ -156.6 \\ 826 \end{gathered}$	$\begin{gathered} 184.35 \\ \\ >4800 \\ 3000 \\ -152.9 \end{gathered}$	Tungsten (Wolfram) Uranium Vanadium Xenon Ytterbium	$\begin{gathered} \text { W } \\ \\ U \\ \mathrm{~V} \\ \mathrm{Xe} \\ \mathrm{Yb} \end{gathered}$	$\begin{aligned} & 74 \\ & \\ & 92 \\ & 23 \\ & 54 \\ & 70 \end{aligned}$	$\begin{gathered} \hline 184 \\ \\ 238 \\ 51 \\ 132 \\ 174 \end{gathered}$	$\begin{gathered} 3370 \\ \\ \text { c. } 1133 \\ 1710 \\ -112 \\ 1800 \end{gathered}$	$\begin{gathered} 5900 \\ \\ 3000 \\ -107.1 \end{gathered}$
Lawrencium Lead Lithium Lutetium Magnesium	$\begin{aligned} & \mathrm{Lw} \\ & \mathrm{~Pb} \\ & \mathrm{Li} \\ & \mathrm{Lu} \\ & \mathrm{Mg} \end{aligned}$	$\begin{gathered} 103 \\ 82 \\ 3 \\ 71 \\ 12 \end{gathered}$	$\begin{gathered} (257) \\ 208 \\ 7 \\ 175 \\ 24 \end{gathered}$	$\begin{gathered} 327.43 \\ 186 \\ 651 \end{gathered}$	1620 1336 ± 5 1107	Ytrium Zinc Zirconium	$\begin{aligned} & \mathrm{Y} \\ & \mathrm{Zn} \\ & \mathrm{Zr} \end{aligned}$	$\begin{aligned} & 39 \\ & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 89 \\ & 64 \\ & 90 \end{aligned}$	$\begin{gathered} 1490 \\ 419.47 \\ 1857 \end{gathered}$	$\begin{gathered} \hline 2500 \\ 907 \\ >2900 \end{gathered}$
Manganese Mendelevium Mercury Molybdenum Neodymium	Mn Mv Hg Mo Nd	$\begin{gathered} 25 \\ 101 \\ 80 \\ 42 \\ 60 \end{gathered}$	$\begin{gathered} 55 \\ (256) \\ 202 \\ 98 \\ 142 \end{gathered}$	$\begin{gathered} 1260 \\ \\ -38.87 \\ 2620 \pm 10 \\ 840 \end{gathered}$	$\begin{gathered} 1900 \\ 356.58 \\ 4800 \end{gathered}$						
1. Mass number shown is that of stable isotope most common in nature. Mass numbers shown in parentheses designate the isotope with the longest half-life (slowest rate of radioactive decay) for those elements having an unstable isotope. 2. Calculated > Greater than											

Conversions, Equivalents, and Physical Data

Conversions, Equivalents, and Physical Data

Recommended Standard Specifications for Valve Materials Pressure-Containing Castings (continued)			
$\left.\begin{array}{ll}\text { Mondel }{ }^{*} \text { Alloy } 411 \\ \text { (Weldable Grade) }\end{array}\right]$Temperature Range $=-325^{\circ}$ to $900^{\circ} \mathrm{F}$ Composition (Percent) Ni Cu Cu Mn M Fe Cl S S Si Si Nb Nb	22Nickel-Moly Alloy "B" ASTM A494 (Hastelloy " "B" \dagger) Temperature Range $=-325^{\circ}$ to $700^{\circ} \mathrm{F}$ Composition (Percent) Cr 1.00 maximum Fe 4.00 to 6.00 C 0.12 maximum Si 1.00 maximum Co 2.50 maximum Mn 1.00 maximum V 0.20 to 0.60 Mo 26.00 to 30.00 P 0.04 maximum S 0.03 maximum Ni Remainder		32Type 304 Stainless Steel ASTM A276 Type 304 Composition (Percent) C Mn 0.08 maximum P 2.00 maximum S 0.045 maximum Si 1.030 maximum Cr 18.00 to 20.00 Ni 8.00 to 12.00
	$24 \quad \begin{aligned} & \text { Cobalt-based Alloy No. } 6\end{aligned}$ Stellite ${ }^{\dagger}$ No. 6 Composition (Percent)	33 Type 316 Stainless Steel ASTM A276 Type 316 Composition (Percent) C Mn 0.08 maximum P 2.00 maximum S 0.045 maximum Si 0.030 maximum Cr 1.00 maximum Ni 10.00 to 18.00 Mo 2.00 to 14.00 	34 Type 316L Stainless Steel ASTM A276 Type 316L
25Aluminum Bar ASTM B211 Alloy 20911-T3 Composition (Percent) Si Fe 0.40 maximum Cu 0.70 maximum Zn 0.00 to 6.00 Bi 0.20 to 0.60 Pb 0.20 to 0.60 Other Elements 0.15 maximum Al Remainder	26 Yellow Brass Bar ASTM B16 1/2 Hard Composition (Percent)	35 Type 410 Stainless Steel ASTM A276 Type 410 Composition (Percent) C 0.15 maximum Mn 1.00 maximum P 0.040 maximum S 0.030 maximum Si 1.00 maximum Cr 11.50 to 13.50 Al 0.10 to 0.30	\left.36 Type ASTM A461 Grade 630 $\right]$ Composition (Percent) C 0.07 maximum Mn 1.00 maximum Si 1.00 maximum P 0.04 maximum S 0.03 maximum Cr 15.50 to 17.50 Nb 0.05 to 0.45 Cu 3.00 to 5.00 Ni 3.00 to 5.00 Fe Remainder
27Naval Brass Bar ASTM B21 Allow 464 Composition (Percent) Cu 59.00 to 62.00 Sn 0.50 to 1.00 Pb 0.20 maximum Zn Remainder	28 Leaded Steel Bar AISI 12L14 Composition (Percent) C 0.15 maximum Mn 0.80 to 1.20 P 0.04 to 0.09 S 0.25 to 0.35 Pb 0.15 to 0.35	37Nickel-Copper Alloy Bar Alloy K500 (K Monel ${ }^{\text {®* }}$)	38 Nickel-Moly Alloy "B" Bar ASTM B335 (Hastelloy "B" ${ }^{\dagger}$) Composition (Percent) Cr 1.00 maximum Fe 4.00 to 6.00 C 0.04 maximum Si 1.00 maximum Co 2.50 maximum Mn 1.00 maximum V 0.20 to 0.40 Mo 26.00 to 30.00 P 0.025 maximum S 0.030 maximum Ni Remainder
29 Carbon Steel Bar ASTM A108 Grade 1018 Composition (Percent) C 0.15 to 0.20 Mn 0.60 to 0.90 P 0.04 maximum S 0.05 maximum		39 Nickel-Moly-Chrome Alloy "C" Bar ASTM B336 (Hastelloy "C" ${ }^{\dagger}$) Composition (Percent) Cr 14.50 to 16.50 Fe 4.00 to 7.00 W 3.00 to 4.50 C 0.08 maximum Si 1.00 maximum Co 2.50 maximum Mn 1.00 maximum Va 0.35 maximum Mo 15.00 to 17.00 P 0.04 S 0.03 Ni Remainder	

TECHNICAL

Conversions, Equivalents, and Physical Data

Recommended Standard Specifications for Valve Materials Pressure-Containing Castings								
MATERIAL CODE AND DESCRIPTION			MINIMUM PHYSICAL PROPERTIES				modulus OF ELASTICITY AT $70^{\circ} \mathrm{F}$ (PSI x 10^{6})	APPROXIMATE BRINELL HARDNESS
			$\begin{aligned} & \text { Tensile } \\ & \text { (Psi) } \end{aligned}$	Yield Point (Psi)	Elong. in 2-inches (\%)	Reduction of Area (\%)		
1	Carbon Steel	ASTM A 216 Grade WCC	70,000	40,000	22	35	30.4	137 to 187
2	Carbon Steel	ASTM A 216 Grade WCB	70,000	36,000	22	35	27.9	137 to 187
3	Carbon Steel	ASTM A 352 Grade LCC	70,000	40,000	22	35	29.9	137 to 187
4	Carbon Steel	ASTM A 352 Grade LCB	65,000	35,000	24	35	27.9	137 to 187
5	Chrome Moly Steel	ASTM A217 Grade C5	90,000	60,000	18	35	27.4	241 Maximum
6	Carbon Moly Steel	ASTM A217 Grade WC1	65,000	35,000	24	35	29.9	215 Maximum
7	Chrome Moly Steel	ASTM A217 Grade WC6	70,000	40,000	20	35	29.9	215 Maximum
8	Chrome Moly Steel	ASTM A217 Grade WC9	70,000	40,000	20	35	29.9	241 Maximum
9	3.5\% Nickel Steel	ASTM A352 Grade LC3	65,000	40,000	24	35	27.9	137
10	Chrome Moly Steel	ASTM A217 Grade C12	90,000	60,000	18	35	27.4	180 to 240
11	Type 304 Stainless Steel	ASTM A351 Grade CF8	65,000	28,000	35	---	28.0	140
12	Type 316 Stainless Steel	ASTM A351 Grade CF8M	70,000	30,000	30	----	28.3	156 to 170
13	Cast Iron	ASTM A126 Class B	31,000	--	---	----	---	160 to 220
14	Cast Iron	ASTM A126 Class C	41,000	----	----	----	---	160 to 220
15	Ductile Iron	ASTM A395 Type 60-45-15	60,000	45,000	15	----	23-26	143 to 207
16	Ductile Ni-Resist Iron ${ }^{(1)}$	ASTM A439 Type D-2B	58,000	30,000	7	----	--	148 to 211
17	Standard Valve Bronze	ASTM B62	30,000	14,000	20	17	13.5	55 to 65*
18	Tin Bronze	ASTM B143 Alloy 1A	40,000	18,000	20	20	15	75 to $85{ }^{*}$
19	Manganese Bronze	ASTM B147 Alloy 8A	65,000	25,000	20	20	15.4	98*
20	Aluminum Bronze	ASTM B148 Alloy 9C	75,000	30,000	12 minimum	12	17	150
21	Mondel Alloy 411	(Weldable Grade)	65,000	32,500	25	----	23	120 to 170
22	Nickel-Moly Alloy "B"	ASTM A494 (Hastelloy ${ }^{\text {² }}$ "B")	72,000	46,000	6	---	--	----
23	Nickel-Moly-Chrome Alloy "C"	ASTM A494 (Hastelloy ${ }^{\text {® }}$ " ${ }^{\text {" }}$)	72,000	46,000	4	--	--	----
24	Cobalt-base Alloy No. 6	Stellite No. 6	121,000	64,000	1 to 2	----	30.4	----
25	Aluminum Bar	ASTM B211 Alloy 20911-T3	44,000	36,000	15	---	10.2	95
26	Yellow Brass Bar	ASTM B16-1/2 Hard	45,000	15,000	7	50	14	---
27	Naval Brass Bar	ASTM B21 Alloy 464	60,000	27,000	22	55	----	----
28	Leaded Steel Bar	AISI 12L14	79,000	71,000	16	52	-	163
29	Carbon Steel Bar	ASTM A108 Grade 1018	69,000	48,000	38	62	--	143
30	AISI 4140 Chrome-Moly Steel	(Suitable for ASTM A193 Grade B7 bolt material)	135,000	115,000	22	63	29.9	255
31	Type 302 Stainless Steel	ASTM A276 Type 302	85,000	35,000	60	70	28	150
32	Type 304 Stainless Steel	ASTM A276 Type 304	85,000	35,000	60	70	----	149
33	Type 316 Stainless Steel	ASTM A276 Type 316	80,000	30,000	60	70	28	149
34	Type 316L Stainless Steel	ASTM A276 Type 316L	81,000	34,000	55	----	----	146
35	Type 410 Stainless Steel	ASTM A276 Type 410	75,000	40,000	35	70	29	155
36	Type 17-4PH Stainless Steel	ASTM A461 Grade 630	135,000	105,000	16	50	29	275 to 345
37	Nickel-Copper Alloy Bar	Alloy K500 (K Monel ${ }^{\text {® }}$)	100,000	70,000	35	----	26	175 to 260
38	Nickel-Moly Alloy "B" Bar	ASTM B335 (Hastelloy ${ }^{\text {® }}$ "B")	100,000	46,000	30	----	----	----
39	Nickel-Moly Alloy "C" Bar	ASTM B336 (Hastelloy ${ }^{\text {² }}$ " ${ }^{\text {" }}$)	100,000	46,000	20	----	----	---
1. 500 kg load.								

TECHNICAL

Conversions, Equivalents, and Physical Data

Physical Constants of Hydrocarbons																
NO.	COMPOUND	FORMULA	MOLECULARWEIGHT	BOILING POINT AT 14.696 PSIA (${ }^{\circ} \mathrm{F}$)	VAPOR PRESSURE AT $100^{\circ} \mathrm{F}$ (PSIA)	FREEZING POINT AT 14.696 PSIA (${ }^{\circ}$ F)	CRITICAL CONSTANTS		SPECIFIC GRAVITY AT 14.696 PSIA							
							Critical Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Critical Pressure (psia)	Liquid ${ }^{(3,4)}$, $60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	$\begin{aligned} & \text { Gas at } 60^{\circ} \mathrm{F} \\ & (\text { Air }=1)^{(1)} \end{aligned}$						
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	Methane Ethane Propane n-Butane Isobutane	$\begin{aligned} & \mathrm{CH}_{4} \\ & \mathrm{C}_{2} \mathrm{H}_{6} \\ & \mathrm{C}_{3} \mathrm{H}_{8} \\ & \mathrm{C}_{4} \mathrm{H}_{10} \\ & \mathrm{C}_{4} \mathrm{H}_{10} \end{aligned}$	16.043 30.070 44.997 58.124 58.124	-258.69 -127.48 -43.67 31.10 10.90	$(5000)^{(2)}$ $(800)^{(2)}$ 190 51.6 72.2	$\begin{gathered} -296.46^{(5)} \\ -297.89^{(5)} \\ -305.84^{(5)} \\ -217.05 \\ -255.29 \end{gathered}$	$\begin{gathered} -116.63 \\ 90.09 \\ 206.01 \\ 305.65 \\ 274.98 \end{gathered}$	$\begin{aligned} & 667.8 \\ & 707.8 \\ & 616.3 \\ & 550.7 \\ & 529.1 \end{aligned}$	$\begin{aligned} & 0.30000^{(8)} \\ & 0.3564^{(7)} \\ & 0.5077^{(7)} \\ & 0.5843^{(7)} \\ & 0.5631^{(7)} \end{aligned}$	$\begin{aligned} & 0.5539 \\ & 1.0382 \\ & 1.5225 \\ & 2.0068 \\ & 2.0068 \end{aligned}$						
$\begin{aligned} & 6 \\ & 7 \\ & 8 \end{aligned}$	n-Pentane Isopentane Neopentane	$\begin{aligned} & \mathrm{C}_{5} \mathrm{H}_{12} \\ & \mathrm{C}_{5} \mathrm{H}_{12} \\ & \mathrm{C}_{5} \mathrm{H}_{12} \end{aligned}$	$\begin{aligned} & 72.151 \\ & 72.151 \\ & 72.151 \end{aligned}$	$\begin{aligned} & 96.92 \\ & 82.12 \\ & 49.10 \\ & \hline \end{aligned}$	$\begin{gathered} 15.570 \\ 20.44 \\ 35.9 \end{gathered}$	$\begin{gathered} -201.51 \\ -255.83 \\ 2.17 \\ \hline \end{gathered}$	$\begin{gathered} 385.7 \\ 369.10 \\ 321.13 \end{gathered}$	$\begin{aligned} & 488.6 \\ & 490.4 \\ & 464.0 \end{aligned}$	$\begin{gathered} 0.6310 \\ 0.6247 \\ 0.5967^{(7)} \end{gathered}$	2.4911 2.4911 2.4911						
$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \\ 13 \end{gathered}$	n-Hexane 2-Methylpentane 3-Methylpentane Neohexane 2,3-Dimethylbutane		86.178 86.178 86.178 86.178 86.178	$\begin{aligned} & 155.72 \\ & 140.47 \\ & 145.89 \\ & 121.52 \\ & 136.36 \end{aligned}$	4.956 6.767 6.098 9.856 7.404	-139.58 -244.63 .--- -147.72 -199.38	453.7 435.83 448.3 420.13 440.29	$\begin{aligned} & 436.9 \\ & 436.6 \\ & 453.1 \\ & 446.8 \\ & 453.5 \end{aligned}$	0.6640 0.6579 0.6689 0.6540 0.6664	$\begin{aligned} & 2.9753 \\ & 2.9753 \\ & 2.9753 \\ & 2.9753 \\ & 2.9753 \end{aligned}$						
14	n-Heptane	$\mathrm{C}_{7} \mathrm{H}_{10}$	100.205	209.17	1.620	-131.05	512.8	396.8	0.6882	3.4596						
15	2-Methylhexane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	194.09	2.271	-180.89	495.00	396.5	0.6830	3.4596						
16	3-Methylhexane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	197.32	2.130	--.-	503.78	408.1	0.6917	3.4596						
17	3-Ethylpentane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	200.25	2.012	-181.48	513.48	419.3	0.7028	3.4596						
18	2,2-Dimethylpentane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	174.54	3.492	-190.86	477.23	402.2	0.6782	3.4596						
19	2,4-Dimethylpentane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	176.89	3.292	-182.63	475.95	396.9	0.6773	3.4596						
20	3,3-Dimethylpentane Triptane	$\mathrm{C}_{7} \mathrm{H}_{4}{ }_{4}$	100.205 100205	186.91 17758	2.773	-210.01	505.85	427.2	0.6976	3.4596						
21	Triptane	$\mathrm{C}_{7} \mathrm{H}_{16}$	100.205	177.58	3.374	-12.82	496.44	428.4	0.6946	3.4596						
22	n-Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114.232	258.22	0.537	-70.18	564.22	360.6	0.7068	3.9439						
23	Disobutyl	$\mathrm{C}_{8} \mathrm{H}_{18}$	114.232	228.39	1.101	-132.07	530.44	360.6	0.6979	3.9439						
24	Isooctane	$\mathrm{C}_{8} \mathrm{H}_{18}$	114.232	210.63	1.708	-161.27	519.46	372.4	0.6962	3.9439						
25	n-Nonane	$\mathrm{C}_{9} \mathrm{H}_{20}$	128.259	303.47	0.179	-64.28	610.68	332	0.7217	4.4282						
26	n-Decane	$\mathrm{C}_{10} \mathrm{H}_{22}$	142.286	345.48	0.0597	-21.36	652.1	304	0.7342	4.9125						
27	Cyclopentane	$\mathrm{C}_{5} \mathrm{H}_{10}$	70.135	120.65	9.914	-136.91	461.5	653.8	0.7504	2.4215						
28	Methylcyclopentane	$\mathrm{C}_{6} \mathrm{H}_{12}$	84.162	161.25	4.503	-224.44	499.35	548.9	0.7536	2.9057						
29	Cyclohexane	$\mathrm{C}_{6} \mathrm{H}_{12}$	84.162	177.29	3.264	43.77	536.7	591	0.7834	2.9057						
30	Methylcyclohexane	$\mathrm{C}_{7} \mathrm{H}_{14}$	98.189	213.68	1.609	-195.98	570.27	503.5	0.7740	3.3900						
31	Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	28.054	-154.62	----	-272.45 ${ }^{(5)}$	48.58	729.8	----	0.9686						
32	Propene	$\mathrm{C}_{3} \mathrm{H}_{6}^{4}$	42.081	-53.90	226.4	-301.45 ${ }^{(5)}$	196.9	669	$0.5220^{(7)}$	1.4529						
33	1-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	20.75	63.05	-301.63 ${ }^{(5)}$	295.6	583	$0.6013^{(7)}$	1.9372						
34	Cis-2-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	38.69	45.54	-218.06	324.37	610	$0.6271^{(7)}$	1.9372						
35	Trans-2-Butene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	33.58	49.80	-157.96	311.86	595	$0.6100^{(7)}$	1.9372						
36	Isobutene	$\mathrm{C}_{4} \mathrm{H}_{8}$	56.108	19.59	63.40	-220.61	292.55	580	$0.6004^{(7)}$	1.9372						
37	1-Pentene	$\mathrm{C}_{5} \mathrm{H}_{10}$	70.135	85.93	19.115	-265.39	376.93	590	$0.645^{(7)}$	2.4215						
38	1,2-Butadiene	$\mathrm{C}_{4} \mathrm{H}_{6}$	54.092	51.56	${ }^{(20)}{ }^{(2)}$	-213.16	(339) ${ }^{(2)}$	(653) ${ }^{(2)}$	$0.658^{(7)}$	1.8676						
39	1,3-Butadiene	$\mathrm{C}_{4} \mathrm{H}_{6}{ }_{6}$	54.092	24.06	(60) ${ }^{22}$	-164.02	306	628	$0.6272^{(7)}$	1.8676						
40	Isoprene	$\mathrm{C}_{5} \mathrm{H}_{8}$	68.119	93.30	16.672	-230.74	(412) ${ }^{(2)}$	(558.4) ${ }^{(2)}$	0.6861	2.3519						
41	Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	26.038	$-119^{(6)}$	----	-114 ${ }^{(5)}$	95.31	890.4	$0.615^{(9)}$	0.8990						
42	Benzene	$\mathrm{C}_{6} \mathrm{H}_{6}$	78.114	176.17	3.224	41.96	552.22	710.4	0.8844	2.6969						
43	Toluene	$\mathrm{C}_{7} \mathrm{H}_{8}$	92.141	231.13	1.032	-138.94	605.55	595.9	0.8718	3.1812						
44	Ethylbenzene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.168	277.16	0.371	-138.91	651.24	523.5	0.8718	3.6655						
45	o-Xylene	$\mathrm{C}_{8} \mathrm{H}_{10}$	106.168	291.97	0.264	-13.30	675.0	541.4	0.8848	3.6655						
46	m -Xylene	$\mathrm{C}_{88} \mathrm{H}_{10}$	106.168	282.41	0.326	-54.12	651.02	513.6	0.8687	3.6655						
47	p-Xylene	$\mathrm{C}_{8}^{8} \mathrm{H}_{10}$	106.168	281.05	0.342	55.86	649.6	509.2	0.8657	3.6655						
48	Styrene	$\mathrm{C}_{8} \mathrm{H}_{8}$	104.152	293.29	(0.24) ${ }^{(2)}$	-23.10	706.0	580	0.9110	3.5959						
49	Isopropylbenzane	$\mathrm{C}_{9} \mathrm{H}_{12}$	120.195	306.34	0.188	-140.82	676.4	465.4	0.8663	4.1498						
1. Calculated values. 2. () - Estimated values. 3. Air saturated hydrocarbons. 4. Absolute values from weights in vacuum. 5. At saturation pressure (----). 6. Sublimation point. 7. Saturation pressure at $60^{\circ} \mathrm{F}$. 8. Apparent value for methane at $60^{\circ} \mathrm{F}$. 9. Specific gravity, $119^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$ (sublimation point).																

TECHNICAL

Conversions, Equivalents, and Physical Data

Physical Constants of Various Fluids								
FLUID	FORMULA	MOLECULAR WEIGHT	$\begin{gathered} \text { BOILING POINT } \\ \text { (}{ }^{\circ} \text { AT } 14.696 \\ \text { PSIA) } \end{gathered}$	VAPOR PRESSURE AT $70^{\circ} \mathrm{F}$ (PSIG)	CRITICAL TEMPERATURE (${ }^{\mathrm{F}}$)	$\begin{gathered} \hline \text { CRITICAL } \\ \text { PRESSURE } \\ \text { (PSIA) } \\ \hline \end{gathered}$	SPECIFIC GRAVITY	
							Liquid $60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	Gas
Acetic Acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}$	60.06	245	----	----	----	1.05	----
Acetone	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$	58.08	133	----	455	691	0.79	2.01
Air	$\mathrm{N}_{2} \mathrm{O}_{2}$	28.97	-317	----	-221	547	$0.86{ }^{\ddagger}$	1.0
Alcohol, Ethyl	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	46.07	173	$2.3{ }^{(2)}$	470	925	0.794	1.59
Alcohol, Methyl	$\mathrm{CH}_{4} \mathrm{O}$	32.04	148	$4.63{ }^{(2)}$	463	1174	0.796	1.11
Ammonia	NH_{3}	17.03	-28	114	270	1636	0.62	0.59
Ammonium Chloride ${ }^{(1)}$	$\mathrm{NH}_{4} \mathrm{Cl}$	----	--	----	----	----	1.07	--
Ammonium Hydroxide ${ }^{(1)}$	$\mathrm{NH}_{4} \mathrm{OH}$	----	----	----	----	----	0.91	----
Ammonium Sulfate ${ }^{(1)}$	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	--	----	----	----	----	1.15	----
Aniline	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$	93.12	365	----	798	770	1.02	---
Argon	A	39.94	-302	----	-188	705	1.65	1.38
Bromine	Br_{2}	159.84	138	----	575	----	2.93	5.52
Calcium Chloride ${ }^{(1)}$	CaCl_{2}	----	----	----	----	----	1.23	--
Carbon Dioxide	CO_{2}	44.01	-109	839	88	1072	$0.801^{(3)}$	1.52
Carbon Disulfide	CS_{2}	76.1	115	----	---	---	1.29	2.63
Carbon Monoxide	CO	28.01	-314	---	-220	507	0.80	0.97
Carbon Tetrachloride	CCl_{4}	153.84	170	----	542	661	1.59	5.31
Chlorine	Cl_{2}	70.91	-30	85	291	1119	1.42	2.45
Chromic Acid	$\mathrm{H}_{2} \mathrm{CrO}_{4}$	118.03	----	----	----	----	1.21	----
Citric Acid	$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$	192.12	----	----	-	----	1.54	----
Copper Sulfate ${ }^{(1)}$	CuSO_{4}	--	--	--	--	---	1.17	--
Ether	$\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$	74.12	34	----	----	----	0.74	2.55
Ferric Chloride ${ }^{(1)}$	FeCl_{3}	----	----	----	----	----	1.23	----
Fluorine	F_{2}	38.00	-305	300	-200	809	1.11	1.31
Formaldehyde	$\mathrm{H}_{2} \mathrm{CO}$	30.03	-6	---	--	---	0.82	1.08
Formic Acid	$\mathrm{HCO}_{2} \mathrm{H}$	46.03	214	----	----	----	1.23	----
Furfural	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2}$	96.08	324	----	----	----	1.16	----
Glycerine	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}$	92.09	554	----	---	---	1.26	----
Glycol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$	62.07	387	----	----	--	1.11	--
Helium	He	4.003	-454	----	-450	33	0.18	0.14
Hydrochloric Acid	HCI	36.47	-115	-	----	----	1.64	--
Hydrofluoric Acid	HF	20.01	66	0.9	446	----	0.92	----
Hydrogen	H_{2}	2.016	-422	----	-400	188	$0.07{ }^{(3)}$	0.07
Hydrogen Chloride	HCl	36.47	-115	613	125	1198	0.86	1.26
Hydrogen Sulfide	$\mathrm{H}_{2} \mathrm{~S}$	34.07	-76	252	213	1307	0.79	1.17
Isopropyl Alcohol	$\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$	60.09	180	----	----	----	0.78	2.08
Linseed Oil	----	----	538	---	----	---	0.93	----
1. Aqueous Solution -25% by weight of compound. 2. Vapor pressure in psia at $100^{\circ} \mathrm{F}$. 3. Density of liquid, $\mathrm{gm} / \mathrm{ml}$ at normal boiling point.								

Technical

Conversions, Equivalents, and Physical Data

Physical Constants of Various Fluids (continued)								
FLUID	FORMULA	MOLECULAR WEIGHT	BOILING POINT (${ }^{\circ}$ F AT 14.696 PSIA)	VAPOR PRESSURE AT $70^{\circ} \mathrm{F}$ (PSIG)	CRITICALTEMPERATURE$\left({ }^{\circ} \mathrm{F}\right)$	CRITICAL PRESSURE (PSIA)	SPECIFIC GRAVITY	
							Liquid $60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	Gas
Magnesium Chloride ${ }^{(1)}$	MgCl_{2}	----	----	----	----	----	1.22	--
Mercury	Hg	200.61	670	----	----	----	13.6	6.93
Methyl Bromide	$\mathrm{CH}_{3} \mathrm{Br}$	94.95	38	13	376	----	1.73	3.27
Methyl Chloride	$\mathrm{CH}_{3} \mathrm{Cl}$	50.49	-11	59	290	969	0.99	1.74
Naphthalene	$\mathrm{C}_{10} \mathrm{H}_{8}$	128.16	424	----	----	----	1.14	4.43
Nitric Acid	HNO_{3}	63.02	187	----	----	----	1.5	----
Nitrogen	N_{2}	28.02	-320	----	-233	493	$0.81{ }^{(3)}$	0.97
Oil, Vegetable	----	--	----	----	----	---	0.91 to 0.94	----
Oxygen	O_{2}	32	-297	----	-181	737	$1.14{ }^{(3)}$	1.105
Phosgene	COCl_{2}	98.92	47	10.7	360	823	1.39	3.42
Phosphoric Acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	98.00	415	----	----	----	1.83	----
Potassium Carbonate ${ }^{(1)}$	$\mathrm{K}_{2} \mathrm{CO}_{3}$	----	----	----	----	--	1.24	----
Potassium Chloride ${ }^{(1)}$	KCI	----	----	----	----	----	1.16	----
Potassium Hydroxide ${ }^{(1)}$	KOH	----	----	----	----	----	1.24	----
Refrigerant 11	$\mathrm{CCl}_{3} \mathrm{~F}$	137.38	75	13.4	388	635	----	5.04
Refrigerant 12	$\mathrm{CCl}_{2} \mathrm{~F}_{2}$	120.93	-22	70.2	234	597	---	4.2
Refrigerant 13	CCIF_{3}	104.47	-115	458.7	84	561	----	----
Refrigerant 21	$\mathrm{CHCl}_{2} \mathrm{~F}$	102.93	48	8.4	353	750	----	3.82
Refrigerant 22	CHClF_{2}	86.48	-41	122.5	205	716	----	----
Refrigerant 23	CHF_{3}	70.02	-119	635	91	691	----	-
Sodium Chloride ${ }^{(1)}$	NaCl	----	----	--	----	--	1.19	----
Sodium Hydroxide ${ }^{(1)}$	NaOH	----	----	----	----	----	1.27	----
Sodium Sulfate ${ }^{(1)}$	$\mathrm{Na}_{2} \mathrm{SO}_{4}$	----	----	----	----	----	1.24	-
Sodium Thiosulfate ${ }^{(1)}$	$\mathrm{Na}_{2} \mathrm{SO}_{3}$	--	----	--	--	--	1.23	----
Starch	$\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right) \mathrm{x}$	--	----	----	--	----	1.50	-
Sugar Solutions ${ }^{(1)}$	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	--	----	----	---	----	1.10	----
Sulfuric Acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	98.08	626	--	--	--	1.83	-
Sulfer Dioxide	SO_{2}	64.6	14	34.4	316	1145	1.39	2.21
Turpentine	----	-	320	----	---	----	0.87	----
Water	$\mathrm{H}_{2} \mathrm{O}$	18.016	212	$0.9492^{(2)}$	706	3208	1.00	0.62
Zinc Chloride ${ }^{(1)}$	ZnCl_{2}	----	----	----	----	----	1.24	----
Zinc Sulfate ${ }^{(1)}$	ZnSO_{4}	----	----	----	----	----	1.31	----
1. Aqueous Solution -25% by weight of compound. 2. Vapor pressure in psia at $100^{\circ} \mathrm{F}$. 3. Density of liquid, $\mathrm{gm} / \mathrm{ml}$ at normal boiling point.								

TECHNICAL

Conversions, Equivalents, and Physical Data

Properties of Water				
TEMPERATURE OF WATER (${ }^{\circ}$ F)	SATURATION PRESSURE (POUNDS PER SQUARE INCH ABSOLUTE)	WEIGHT (POUNDS PER GALLON)	SPECIFIC GRAVITY $60^{\circ} \mathrm{F} / 60^{\circ} \mathrm{F}$	CONVERSION FACTOR LBS/HR TO GPM
32	0.0885	8.345	1.0013	0.00199
40	0.1217	8.345	1.0013	0.00199
50	0.1781	8.340	1.0007	0.00199
60	0.2653	8.334	1.0000	0.00199
70	0.3631	8.325	0.9989	0.00200
80	0.5069	8.314	0.9976	0.00200
90	0.6982	8.303	0.9963	0.00200
100	0.9492	8.289	0.9946	0.00201
110	1.2748	8.267	0.9919	0.00201
120	1.6924	8.253	0.9901	0.00200
130	2.2225	8.227	0.9872	0.00202
140	2.8886	8.207	0.9848	0.00203
150	3.718	8.182	0.9818	0.00203
160	4.741	8.156	0.9786	0.00204
170	5.992	8.127	0.9752	0.00205
180	7.510	8.098	0.9717	0.00205
190	9.339	8.068	0.9681	0.00206
200	11.526	8.039	0.9646	0.00207
210	14.123	8.005	0.9605	0.00208
212	14.696	7.996	0.9594	0.00208
220	17.186	7.972	0.9566	0.00209
240	24.969	7.901	0.9480	0.00210
260	35.429	7.822	0.9386	0.00211
280	49.203	7.746	0.9294	0.00215
300	67.013	7.662	0.9194	0.00217
350	134.63	7.432	0.8918	0.00224
400	247.31	7.172	0.8606	0.00232
450	422.6	6.892	0.8270	0.00241
500	680.8	6.553	0.7863	0.00254
550	1045.2	6.132	0.7358	0.00271
600	1542.9	5.664	0.6796	0.00294
700	3093.7	3.623	0.4347	0.00460
1. Multiply flow in pounds per hour by the factor to get equivalent flow in gallons per minute. Weight per gallon is based on 7.48 gallons per cubic foot.				

Properties of Saturated Steam							
ABSOLUTE PRESSURE		VACUUM (INCHES OF HG)	TEMP. (${ }^{\circ} \mathrm{F}$)	HEAT OF THE LIQUID (BTU/LB.)	LATENT HEAT OF EVAPORATION (BTU/LB.)	TOTAL HEAT OF STEAM HG (BTU/LB.)	SPECIFIC VOLUME (CUBIC FT./LB.)
PSIA	Inches of Hg						
0.20	0.41	29.51	53.14	21.21	1063.8	1085.0	1526.0
0.25	0.51	29.41	59.30	27.36	1060.3	1087.7	1235.3
0.30	0.61	29.31	64.47	32.52	1057.4	1090.0	1039.5
0.35	0.71	29.21	68.93	36.97	1054.9	1091.9	898.5
0.40	0.81	29.11	72.86	40.89	1052.7	1093.6	791.9
0.45	0.92	29.00	76.38	44.41	1050.7	1095.1	708.5
0.50	1.02	28.90	79.58	47.60	1048.8	1096.4	641.4
0.60	1.22	28.70	85.21	53.21	1045.7	1098.9	540.0
0.70	1.43	28.49	90.08	58.07	1042.9	1101.0	466.9
0.80	1.63	28.29	94.38	62.36	1040.4	1102.8	411.7
0.90	1.83	28.09	98.24	66.21	1038.3	1104.5	368.4
1.0	2.04	27.88	101.74	69.70	1036.3	1106.0	333.6
1.2	2.44	27.48	107.92	75.87	1032.7	1108.6	280.9
1.4	2.85	27.07	113.26	81.20	1029.6	1110.8	243.0
1.6	3.26	26.66	117.99	85.91	1026.9	1112.8	214.3
1.8	3.66	26.26	122.23	90.14	1024.5	1114.6	191.8
2.0	4.07	25.85	126.08	93.99	1022.2	1116.2	173.73
2.2	4.48	25.44	129.62	97.52	1020.2	1117.7	158.85
2.4	4.89	25.03	132.89	100.79	1018.3	1119.1	146.38
2.6	5.29	24.63	135.94	103.83	1016.5	1120.3	135.78
2.8	5.70	24.22	138.79	106.68	1014.8	1121.5	126.65
3.0	6.11	23.81	141.48	109.37	1013.2	1122.6	67.24
3.5	7.13	22.79	147.57	115.46	1009.6	1125.1	61.98
4.0	8.14	21.78	152.97	120.86	1006.4	1127.3	57.50
4.5	9.16	20.76	157.83	125.71	1003.6	1129.3	53.64
5.0	10.18	19.74	162.24	130.13	1001.0	1131.1	50.29
5.5	11.20	18.72	166.30	134.19	998.5	1132.7	67.24
6.0	12.22	17.70	170.06	137.96	996.2	1134.2	61.98
6.5	13.23	16.69	173.56	141.47	994.1	1135.6	57.50
7.0	14.25	15.67	176.85	144.76	992.1	1136.9	53.64
7.5	15.27	14.65	179.94	147.86	990.2	1138.1	50.29
8.0	16.29	13.63	182.86	150.79	988.5	1139.3	47.34
8.5	17.31	12.61	185.64	153.57	986.8	1140.4	44.73
9.0	18.32	11.60	188.28	156.22	985.2	1141.4	42.40
9.5	19.34	10.58	190.80	158.75	983.6	1142.3	40.31
10.0	20.36	9.56	193.21	161.17	982.1	1143.3	38.42
11.0	22.40	7.52	197.75	165.73	979.3	1145.0	35.14
12.0	24.43	5.49	201.96	169.96	976.6	1146.6	32.40
13.0	26.47	3.45	205.88	173.91	974.2	1148.1	30.06
14.0	28.50	1.42	209.56	177.61	971.9	1149.5	28.04

[^0]
TECHNICAL

Conversions, Equivalents, and Physical Data

Properties of Saturated Steam (continued)													
PRESSURE (PSI)		TEMP. (${ }^{\circ} \mathrm{F}$)	HEAT OF THE LIQUID (BTU/LB)	LATENT HEAT OF EVAPORATION (BTU/LB)	total heat OF STEAM H ${ }_{\mathrm{g}}$ (BTU/LB)	SPECIFIC VOLUME ∇ ($\mathrm{FT}^{3} / \mathrm{LB}$)	PRESSURE (PSI)		TEMP. (${ }^{\circ} \mathrm{F}$)	HEAT OFTHE LIQUD (BTU/LB)	LATENT HEAT OF EVAPORATION (BTU/LB)	TOTAL HEAT OF STEAM H (BTU/LB)	SPECIFIC VOLUME $\stackrel{\nabla}{\left(\mathrm{FT}^{3} / \mathrm{LB}\right)}$
Absolute P'	$\underset{\mathrm{P}}{\text { Gauge }}$						Absolute P'	$\begin{gathered} \text { Gauge } \\ \mathbf{P} \end{gathered}$					
14.696	0.0	212.00	180.07	970.3	1150.4	26.80	----	----	----	----		----	
15.0	0.3	213.03	181.11	969.7	1150.8	26.29	75.0	60.3	307.60	277.43	904.5	1181.9	5.816
16.0	1.3	216.32	184.42	967.6	1152.0	24.72	76.0	61.3	308.50	278.37	903.7	1182.1	5.743
17.0	2.3	219.44	187.56	965.5	1153.1	23.39	77.0	62.3	309.40	279.30	903.1	1182.4	5.673
18.0	3.3	222.41	190.56	963.6	1154.2	22.17	78.0	63.3	310.29	280.21	902.4	1182.6	5.604
19.0	4.3	225.24	193.42	961.9	1155.3	21.08	79.0	64.3	311.16	281.12	901.7	1182.8	5.537
20.0	5.3	227.96	196.16	960.1	1156.3	20.089	80.0	65.3	312.03	282.02	901.1	1183.1	5.472
21.0	6.3	230.57	198.79	958.4	1157.2	19.192	81.0	66.3	312.89	282.91	900.4	1183.3	5.408
22.0	7.3	233.07	201.33	956.8	1158.1	18.375	82.0	67.3	313.74	283.79	899.7	1183.5	5.346
23.0	8.3	235.49	203.78	955.2	1159.0	17.627	83.0	68.3	314.59	284.66	899.1	1183.8	5.285
24.0	9.3	237.82	206.14	953.7	1159.8	16.938	84.0	69.3	315.42	285.53	898.5	1184.0	5.226
25.0	10.3	240.07	208.42	952.1	1160.6	16.303	85.0	70.3	316.25	286.39	897.8	1184.2	5.168
26.0	11.3	242.25	210.62	950.7	1161.3	15.715	86.0	71.3	317.07	287.24	897.2	1184.4	5.111
27.0	12.3	244.36	212.75	949.3	1162.0	15.170	87.0	72.3	317.88	288.08	896.5	1184.6	5.055
28.0	13.3	246.41	214.83	947.9	1162.7	14.663	88.0	73.3	318.68	288.91	895.9	1184.8	5.001
29.0	14.3	248.40	216.86	946.5	1163.4	14.189	89.0	74.3	319.48	289.74	895.3	1185.1	4.948
30.0	15.3	250.33	218.82	945.3	1164.1	13.746	90.0	75.3	320.27	290.56	894.7	1185.3	4.896
31.0	16.3	252.22	220.73	944.0	1164.7	13.330	91.0	76.3	321.06	291.38	894.1	1185.5	4.845
32.0	17.3	254.05	222.59	942.8	1165.4	12.940	92.0	77.3	321.83	292.18	893.5	1185.7	4.796
33.0	18.3	255.84	224.41	941.6	1166.0	12.572	93.0	78.3	322.60	292.98	892.9	1185.9	4.747
34.0	19.3	257.58	226.18	940.3	1166.5	12.226	94.0	79.3	323.36	293.78	892.3	1186.1	4.699
35.0	20.3	259.28	227.91	939.2	1167.1	11.898	95.0	80.3	324.12	294.56	891.7	1186.2	4.652
36.0	21.3	260.95	229.60	938.0	1167.6	11.588	96.0	81.3	324.87	295.34	891.1	1186.4	4.606
37.0	22.3	262.57	231.26	936.9	1168.2	11.294	97.0	82.3	325.61	296.12	890.5	1186.6	4.561
38.0	23.3	264.16	232.89	935.8	1168.7	11.150	98.0	83.3	326.35	296.89	889.9	1186.8	4.517
39.0	24.3	265.72	234.48	934.7	1169.2	10.750	99.0	84.3	327.08	297.65	889.4	1187.0	4.474
40.0	25.3	267.25	236.03	933.7	1169.7	10.498	100.0	85.3	327.81	298.40	888.8	1187.2	4.432
41.0	26.3	268.74	237.55	932.6	1170.2	10.258	101.0	86.3	328.53	299.15	888.2	1187.4	4.391
42.0	27.3	270.21	239.04	931.6	1170.7	10.029	102.0	87.3	329.25	299.90	887.6	1187.5	4.350
43.0	28.3	271.64	240.51	930.6	1171.1	9.810	103.0	88.3	329.96	300.64	887.1	1187.7	4.310
44.0	29.3	273.05	241.95	929.6	1171.6	9.601	104.0	89.3	330.66	301.37	886.5	1187.9	4.271
45.0	30.3	274.44	243.36	928.6	1172.0	9.401	105.0	90.3	331.36	302.10	886.0	1188.1	4.232
46.0	31.3	275.80	244.75	927.7	1172.4	9.209	106.0	91.3	332.05	302.82	885.4	1188.2	4.194
47.0	32.3	277.13	246.12	926.7	1172.9	9.025	107.0	92.3	332.74	303.54	884.9	1188.4	4.157
48.0	33.3	278.45	247.47	925.8	1173.3	8.848	108.0	93.3	333.42	304.26	884.3	1188.6	4.120
49.0	34.3	279.74	248.79	924.9	1173.7	8.678	109.0	94.3	334.10	304.97	883.7	1188.7	4.084
50.0	35.3	281.01	250.09	924.0	1174.1	8.515	110.0	95.3	334.77	305.66	883.2	1188.9	4.049
51.0	36.3	282.26	251.37	923.0	1174.4	8.359	111.0	96.3	335.44	306.37	882.6	1189.0	4.015
52.0	37.3	283.49	252.63	922.2	1174.8	8.208	112.0	97.3	336.11	307.06	882.1	1189.2	3.981
53.0	38.3	284.70	253.87	921.3	1175.2	8.062	113.0	98.3	336.77	307.75	881.6	1189.4	3.947
54.0	39.3	285.90	255.09	920.5	1175.6	7.922	114.0	99.3	337.42	308.43	881.1	1189.5	3.914
55.0	40.3	287.07	256.30	919.6	1175.9	7.787	115.0	100.3	338.07	309.11	880.6	1189.7	3.882
56.0	41.3	288.28	257.50	918.8	1176.3	7.656	116.0	101.3	338.72	309.79	880.0	1189.8	3.850
57.0	42.3	289.37	258.67	917.9	1176.6	7.529	117.0	102.3	339.36	310.46	879.5	1190.0	3.819
58.0	43.3	290.50	259.82	917.1	1176.9	7.407	118.0	103.3	339.99	311.12	879.0	1190.1	3.788
59.0	44.3	291.61	260.96	916.3	1177.3	7.289	119.0	104.3	340.62	311.78	878.4	1190.2	3.758
60.0	45.3	292.71	262.09	915.5	1177.6	7.175	120.0	105.3	341.25	312.44	877.9	1190.4	3.728
61.0	46.3	293.79	263.20	914.7	1177.9	7.064	121.0	106.3	341.88	313.10	877.4	1190.5	3.699
62.0	47.3	294.85	264.30	913.9	1178.2	6.957	122.0	107.3	342.50	313.75	876.9	1190.7	3.670
63.0	48.3	295.90	265.38	913.1	1178.5	6.853	123.0	108.3	343.11	314.40	876.4	1190.8	3.642
64.0	49.3	296.94	266.45	912.3	1178.8	6.752	124.0	109.3	343.72	315.04	875.9	1190.9	3.614
65.0	50.3	297.97	267.50	911.6	1179.1	6.655	125.0	110.3	344.33	315.68	875.4	1191.1	3.587
66.0	51.3	298.99	268.55	910.8	1179.4	6.560	126.0	111.3	344.94	316.31	874.9	1191.2	3.560
67.0	52.3	299.99	269.58	910.1	1179.7	6.468	127.0	112.3	345.54	316.94	874.4	1191.3	3.533
68.0	53.3	300.98	270.60	909.4	1180.0	6.378	128.0	113.3	346.13	317.57	873.9	1191.5	3.507
69.0	54.3	301.96	291.61	908.7	1180.3	6.291	129.0	114.3	346.73	318.19	873.4	1191.6	3.481
70.0	55.3	302.92	272.61	907.9	1180.6	6.206	130.0	115.3	347.32	318.81	872.9	1191.7	3.455
71.0	56.3	303.88	273.60	907.2	1180.8	6.124	131.0	116.3	347.90	319.43	872.5	1191.9	3.430
72.0	57.3	304.83	274.57	906.5	1181.1	6.044	132.0	117.3	348.48	320.04	872.0	1192.0	3.405
73.0	58.3	305.76	275.54	905.8	1181.3	5.966	133.0	118.3	349.06	320.65	871.5	1192.1	3.381
74.0	59.3	306.68	276.49	905.1	1181.6	5.890	134.0	119.3	349.64	321.25	871.0	1192.2	3.357

- continued -

Conversions, Equivalents, and Physical Data

Properties of Saturated Steam (continued)													
PRESSURE (PSI)		TEMP. (${ }^{\circ} \mathrm{F}$)	heat of THE LIQUID (BTU/LB)	LATENT HEAT OF EVAPORATION (BTU/LB)	TOTAL HEAT OF STEAM H_{9} (BTU/LB)	SPECIFIC VOLUME ∇ ($\mathrm{FT}^{3} / \mathrm{LB}$)	PRESSURE (PSI)		TEMP (${ }^{\circ} \mathrm{F}$)	HEAT OF THE LIQUID (BTU/LB)	LATENT HEAT OF EVAPORATION (BTU/LB)	total heat OF STEAM H_{9} (BTU/LB.)	SPECIFIC VOLUME ∇ (CU. FT./LB.)
Absolute P'	$\begin{array}{\|c\|} \text { Gauge } \\ \mathbf{P} \end{array}$						Absolute P'	Gauge P					
135.0	120.3	350.21	321.85	870.6	1192.4	3.333	400.0	385.3	444.59	424.0	780.5	1204.5	1.1613
136.0	121.3	350.78	322.45	870.1	1192.5	3.310	420.0	405.3	449.39	429.4	775.2	1204.6	1.1061
137.0	122.3	351.35	323.05	869.6	1192.6	3.287	440.0	425.3	454.02	434.6	770.0	1204.6	1.0556
138.0	123.3	351.91	323.64	869.1	1192.7	3.264	460.0	445.3	458.50	439.7	764.9	1204.6	1.0094
139.0	124.3	352.47	324.23	868.7	1192.9	3.242	480.0	465.3	462.82	444.6	759.9	1204.5	0.9670
140.0	125.3	353.02	324.82	868.2	1193.0	3.220	500.0	485.3	467.01	449.4	755.0	1204.4	0.9278
141.0	126.3	353.57	325.40	867.7	1193.1	3.198	520.0	505.3	471.07	454.1	750.1	1204.2	0.7815
142.0	127.3	354.12	325.98	867.2	1193.2	3.177	540.0	525.3	475.01	458.6	745.4	1204.0	0.8578
143.0	128.3	354.67	326.56	866.7	1193.3	3.155	560.0	545.3	478.85	463.0	740.8	1203.8	0.8265
144.0	129.3	355.21	327.13	866.3	1193.4	3.134	580.0	565.3	482.58	467.4	736.1	1203.5	0.7973
145.0	130.3	355.76	327.70	865.8	1193.5	3.114	600.0	585.3	486.21	471.6	731.6	1203.2	0.7698
146.0	131.3	356.29	328.27	865.3	1193.6	3.094	620.0	605.3	489.75	475.7	727.2	1202.9	0.7440
147.0	132.3	356.83	328.83	864.9	1193.8	3.074	640.0	625.3	493.21	479.8	722.7	1202.5	0.7198
148.0	133.3	357.36	329.39	864.5	1193.9	3.054	660.0	645.3	496.58	483.8	718.3	1202.1	0.6971
149.0	134.3	357.89	329.95	864.0	1194.0	3.034	680.0	665.3	499.88	487.7	714.0	1201.7	0.6757
150.0	135.3	358.42	330.51	863.6	1194.1	3.015	700.0	685.3	503.10	491.5	709.7	1201.2	0.6554
152.0	137.3	359.46	331.61	862.7	1194.3	2.977	720.0	705.3	506.25	495.3	705.4	1200.7	0.6362
154.0	139.3	360.49	332.70	851.8	1194.5	2.940	740.0	725.3	509.34	499.0	701.2	1200.2	0.6180
156.0	141.3	361.52	333.79	860.9	1194.7	2.904	760.0	745.3	512.36	502.6	697.1	1199.7	0.6007
158.0	143.3	362.53	334.86	860.0	1194.9	2.869	780.0	765.3	505.33	506.2	692.9	1199.1	0.5843
160.0	145.3	363.53	335.93	859.2	1195.1	2.834	800.0	785.3	518.23	509.7	688.9	1198.6	0.5687
162.0	147.3	364.53	336.98	858.3	1195.3	2.801	820.0	805.3	521.08	513.2	684.8	1198.0	0.5538
164.0	149.3	365.51	338.02	857.5	1195.5	2.768	840.0	825.3	523.88	516.6	680.8	1197.4	0.5396
166.0	151.3	366.48	339.05	856.6	1195.7	2.736	860.0	845.3	526.63	520.0	676.8	1196.8	0.5260
168.0	153.3	367.45	340.07	855.7	1195.8	2.705	880.0	865.3	529.33	523.3	672.8	1196.1	0.5130
170.0	155.3	368.41	341.09	854.9	1196.0	2.675	900.0	885.3	531.98	526.6	668.8	1195.4	0.5006
172.0	157.3	369.35	342.10	854.1	1196.2	2.645	920.0	905.3	534.59	529.8	664.9	1194.7	0.4886
174.0	159.3	370.29	343.10	853.3	1196.4	2.616	940.0	925.3	537.16	533.0	661.0	1194.0	0.4772
176.0	161.3	371.22	344.09	852.4	1196.5	2.587	960.0	945.3	539.68	536.2	657.1	1193.3	0.4663
178.0	163.3	372.14	345.06	851.6	1196.7	2.559	980.0	965.3	542.17	539.3	653.3	1192.6	0.4557
180.0	165.3	373.06	346.03	850.8	1196.9	2.532	1000.0	985.3	544.61	542.4	649.4	1191.8	0.4456
182.0	167.3	373.96	347.00	850.0	1197.0	2.505	1050.0	1035.3	550.57	550.0	639.9	1189.9	0.4218
184.0	169.3	374.86	347.96	849.2	1197.2	2.479	1100.0	1085.3	556.31	557.4	630.4	1187.8	0.4001
186.0	171.3	375.75	348.92	848.4	1197.3	2.454	1150.0	1135.3	561.86	565.6	621.0	1185.6	0.3802
188.0	173.3	376.64	349.86	847.6	1197.5	2.429	1200.0	1185.3	567.22	571.7	611.7	1183.4	0.619
190.0	175.3	377.51	350.79	846.8	1197.6	2.404	1250.0	1235.3	572.42	578.6	602.4	1181.0	0.3450
192.0	177.3	378.38	351.72	846.1	1197.8	2.380	1300.0	1285.3	577.46	585.4	593.2	1178.6	0.3293
194.0	179.3	379.24	352.64	845.3	1197.9	2.356	1350.0	1335.3	582.35	592.1	584.0	1176.1	0.3148
196.0	181.3	380.10	353.55	844.5	1198.1	2.333	1400.0	1385.3	587.10	598.7	574.7	1173.4	0.3012
198.0	183.3	380.95	354.46	843.7	1198.2	2.310	1450.0	1435.3	591.73	605.2	565.5	1170.7	0.2884
200.0	185.3	381.79	355.36	843.0	1198.4	2.288	1500.0	1485.3	596.23	611.6	556.3	1167.9	0.2765
205.0	190.3	383.86	357.58	841.0	1198.7	2.234	1600.0	1585.3	604.90	624.1	538.0	1162.1	0.2548
210.0	195.3	385.90	359.77	839.2	1199.0	2.183	1700.0	1685.3	613.15	636.3	519.6	1155.9	0.2354
215.0	200.3	387.89	361.91	837.4	1199.3	2.134	1800.0	1785.3	621.03	648.3	501.1	1149.4	0.2179
220.0	205.3	389.86	364.02	835.6	1199.6	2.087	1900.0	1885.3	628.58	660.1	482.4	1142.4	0.2021
225.0	210.3	391.79	366.09	833.8	1199.9	2.0422	2000.0	1985.3	635.82	671.7	463.4	1135.1	0.1878
230.0	215.3	393.68	368.13	832.0	1200.1	1.9992	2100.0	2085.3	642.77	683.3	444.1	1127.4	0.1746
235.0	220.3	395.54	370.14	830.3	1200.4	1.9579	2200.0	2185.3	649.46	694.8	424.4	1119.2	0.1625
240.0	225.3	397.37	372.12	828.5	1200.6	1.9183	2300.0	2285.3	655.91	706.5	403.9	1110.4	0.1513
245.0	230.3	399.18	374.08	826.8	1200.9	1.8803	2400.0	2385.3	662.12	718.4	382.7	1101.1	0.1407
250.0	235.3	400.95	376.00	825.1	1201.1	1.8438	2500.0	2485.3	668.13	730.6	360.5	1091.1	0.1307
255.0	240.3	402.70	377.89	823.4	1201.3	1.8086	2600.0	2585.3	673.94	743.0	337.2	1080.2	0.1213
260.0	245.3	404.42	379.76	821.8	1201.5	1.7748	2700.0	2685.3	679.55	756.2	312.1	1068.3	0.1123
265.0	250.3	406.11	381.60	820.1	1201.7	1.7422	2800.0	2785.3	684.99	770.1	284.7	1054.8	0.1035
270.0	255.3	407.78	383.42	818.5	1201.9	1.7107	2900.0	2885.3	690.26	785.4	253.6	1039.0	0.0947
275.0	260.3	409.43	385.21	816.9	1202.1	1.6804	3000.0	2985.3	695.36	802.5	217.8	1020.3	0.0858
280.0	265.3	411.05	386.98	815.3	1202.3	1.6511	3100.0	3085.3	700.31	825.0	168.1	993.1	0.0753
285.0	270.3	412.65	388.73	813.7	1202.4	1.6228	3200.0	3185.3	705.11	872.4	62.0	934.4	0.0580
290.0	275.3	414.23	390.46	812.1	1202.6	1.5954	3206.2	3191.5	705.40	902.7	0.0	902.7	0.0503
295.0	280.3	415.79	392.16	810.5	1202.7	1.5689	----	----	----	----	----	----	----
300.0	285.3	417.33	393.84	809.0	1202.8	1.5433	----	-	----	----	----	----	----
320.0	305.3	423.29	400.39	803.0	1203.4	1.4485	----	----	----	----	----	----	----
340.0	325.3	428.97	406.66	797.1	1203.7	1.3645	----	----	----	----	----	----	----
360.0	345.3	434.40	412.67	797.4	1204.1	1.2895	----	----	----	----	----	----	----
380.0	365.3	439.60	418.45	785.8	1204.3	1.2222	----	----	----	----	----	--	----

Conversions, Equivalents, and Physical Data

Properties of Saturated Steam (Metric)							
		Volume, m/kg		ENTHALPY, kJ/kg		ENTROPY, kJ/(kg x ${ }^{\text {K }}$)	
-	PRESSURE, BAR	Condensed	Vapor	Condensed	Vapor	Condensed	Vapor
150	6.30 to 11	1.073 to 3	$9.55+9$	- 539.6	2273	-2.187	16.54
$\begin{aligned} & \hline 160 \\ & 170 \\ & 180 \\ & 190 \\ & 200 \end{aligned}$	$\begin{gathered} 7.72 \text { to } 10 \\ 7.29 \text { to } 9 \\ 5.38 \text { to } 8 \\ 3.23 \text { to } 7 \\ 1.62 \text { to } 6 \end{gathered}$	1.074 to 3 1.076 to 3 1.077 to 3 1.078 to 3 1.079 to 3	$\begin{aligned} & 9.62+8 \\ & 1.08+8 \\ & 1.55+7 \\ & 2.72+6 \\ & 5.69+5 \end{aligned}$	$\begin{aligned} & -525.7 \\ & -511.7 \\ & -497.8 \\ & -483.8 \\ & -467.5 \end{aligned}$	$\begin{aligned} & 2291 \\ & 2310 \\ & 2328 \\ & 2347 \\ & 2366 \end{aligned}$	$\begin{array}{r} -2.106 \\ -2.026 \\ -1.947 \\ -1.868 \\ -1.89 \end{array}$	$\begin{aligned} & 15.49 \\ & 14.57 \\ & 13.76 \\ & 16.03 \\ & 12.38 \end{aligned}$
$\begin{aligned} & 210 \\ & 220 \\ & 230 \\ & 240 \\ & 250 \end{aligned}$	$\begin{aligned} & 7.01 \text { to } 6 \\ & 2.65 \text { to } 5 \\ & 8.91 \text { to } 5 \\ & 3.72 \text { to } 4 \\ & 7.59 \text { to } 4 \end{aligned}$	$\begin{aligned} & 1.081 \text { to } 3 \\ & 1.082 \text { to } 3 \\ & 1.084 \text { to } 3 \\ & 1.085 \text { to } 3 \\ & 1.087 \text { to } 3 \end{aligned}$	$\begin{aligned} & 1.39+5 \\ & 3.83+4 \\ & 1.18+4 \\ & 4.07+3 \\ & 1.52+3 \end{aligned}$	$\begin{aligned} & -451.2 \\ & -435.0 \\ & -416.3 \\ & -400.1 \\ & -318.5 \end{aligned}$	$\begin{aligned} & 2384 \\ & 2403 \\ & 2421 \\ & 2440 \\ & 2459 \end{aligned}$	$\begin{aligned} & -1.711 \\ & -1.633 \\ & -1.555 \\ & -1.478 \\ & -1.400 \end{aligned}$	$\begin{aligned} & 11.79 \\ & 11.20 \\ & 10.79 \\ & 10.35 \\ & 9.954 \end{aligned}$
$\begin{gathered} 255 \\ 260 \\ 265 \\ 270 \\ 273.15 \end{gathered}$	$\begin{aligned} & 1.23 \text { to } 3 \\ & 1.96 \text { to } 3 \\ & 3.06 \text { to } 3 \\ & 4.69 \text { to } 3 \\ & 6.11 \text { to } 3 \end{aligned}$	$\begin{aligned} & 1.087 \text { to } 3 \\ & 1.088 \text { to } 3 \\ & 1.089 \text { to } 3 \\ & 1.090 \text { to } 3 \\ & 1.091 \text { to } 3 \end{aligned}$	956.4 612.2 400.4 265.4 206.3	$\begin{aligned} & -369.8 \\ & -360.5 \\ & -351.2 \\ & -339.6 \\ & -333.5 \end{aligned}$	$\begin{aligned} & 2468 \\ & 2477 \\ & 2486 \\ & 2496 \\ & 2502 \\ & \hline \end{aligned}$	$\begin{array}{r} -1.361 \\ -1.323 \\ -1.281 \\ -1.296 \\ -1.221 \\ \hline \end{array}$	$\begin{aligned} & 9.768 \\ & 9.590 \\ & 9.461 \\ & 9.255 \\ & 9.158 \\ & \hline \end{aligned}$
$\begin{gathered} \hline 273.15 \\ 275 \\ 280 \\ 285 \\ 290 \\ \hline \end{gathered}$	$\begin{aligned} & 0.00611 \\ & 0.00697 \\ & 0.00990 \\ & 0.01387 \\ & 0.01917 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.000 \text { to } 3 \\ & 1.001 \text { to } 3 \\ & \hline \end{aligned}$	$\begin{gathered} 206.3 \\ 181.7 \\ 130.4 \\ 99.4 \\ 69.7 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.00 \\ & 7.80 \\ & 28.8 \\ & 49.8 \\ & 70.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2502 \\ & 2505 \\ & 2514 \\ & 2523 \\ & 2532 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.028 \\ & 0.104 \\ & 0.178 \\ & 0.251 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9.158 \\ & 9.109 \\ & 8.890 \\ & 8.857 \\ & 8.740 \\ & \hline \end{aligned}$
$\begin{aligned} & 295 \\ & 300 \\ & 305 \\ & 310 \\ & 315 \end{aligned}$	$\begin{aligned} & \hline 0.02617 \\ & 0.03531 \\ & 0.04712 \\ & 0.06221 \\ & 0.08132 \end{aligned}$	$\begin{aligned} & 1.002 \text { to } 3 \\ & 1.003 \text { to } 3 \\ & 1.005 \text { to } 3 \\ & 1.007 \text { to } 3 \\ & 1.009 \text { to } 3 \end{aligned}$	$\begin{aligned} & \hline 51.94 \\ & 39.13 \\ & 27.90 \\ & 22.93 \\ & 17.82 \\ & \hline \end{aligned}$	$\begin{gathered} 91.6 \\ 112.5 \\ 133.4 \\ 154.3 \\ 175.2 \end{gathered}$	$\begin{aligned} & \hline 2541 \\ & 2550 \\ & 2559 \\ & 2568 \\ & 2577 \\ & \hline \end{aligned}$	0.323 0.393 0.462 0.530 0.597	$\begin{aligned} & 8.627 \\ & 8.520 \\ & 8.417 \\ & 8.318 \\ & 8.224 \end{aligned}$
$\begin{aligned} & \hline 320 \\ & 325 \\ & 330 \\ & 335 \\ & 340 \end{aligned}$	$\begin{aligned} & 0.01053 \\ & 0.01351 \\ & 0.01719 \\ & 0.02167 \\ & 0.02713 \end{aligned}$	$\begin{aligned} & 1.011 \text { to } 3 \\ & 1.013 \text { to } 3 \\ & 1.016 \text { to } 3 \\ & 1.018 \text { to } 3 \\ & 1.021 \text { to } 3 \end{aligned}$	$\begin{gathered} \hline 13.98 \\ 11.06 \\ 8.82 \\ 7.09 \\ 5.74 \end{gathered}$	$\begin{aligned} & 196.1 \\ & 217.0 \\ & 237.9 \\ & 258.8 \\ & 279.8 \end{aligned}$	2586 2595 2604 2613 2622	$\begin{aligned} & 0.649 \\ & 0.727 \\ & 0.791 \\ & 0.854 \\ & 0.916 \end{aligned}$	$\begin{aligned} & 8.151 \\ & 8.046 \\ & 7.962 \\ & 7.881 \\ & 7.804 \end{aligned}$
$\begin{aligned} & 345 \\ & 350 \\ & 355 \\ & 360 \\ & 365 \end{aligned}$	$\begin{aligned} & 0.3372 \\ & 0.4163 \\ & 0.5100 \\ & 0.6209 \\ & 0.7514 \end{aligned}$	1.024 to 3 1.027 to 3 1.030 to 3 1.034 to 3 1.038 to 3	$\begin{aligned} & 4.683 \\ & 3.846 \\ & 3.180 \\ & 2.645 \\ & 2.212 \end{aligned}$	$\begin{aligned} & 300.7 \\ & 321.7 \\ & 342.7 \\ & 363.7 \\ & 384.7 \end{aligned}$	$\begin{aligned} & 2630 \\ & 2639 \\ & 2647 \\ & 2655 \\ & 2663 \end{aligned}$	$\begin{aligned} & 0.977 \\ & 1.038 \\ & 1.097 \\ & 1.156 \\ & 1.214 \end{aligned}$	$\begin{aligned} & 7.729 \\ & 7.657 \\ & 7.588 \\ & 7.521 \\ & 7.456 \end{aligned}$
$\begin{gathered} \hline 370 \\ 373.15 \\ 375 \\ 380 \\ 385 \end{gathered}$	$\begin{aligned} & 0.9040 \\ & 1.0133 \\ & 1.0815 \\ & 1.2869 \\ & 1.5233 \end{aligned}$	$\begin{aligned} & 1.041 \text { to } 3 \\ & 1.044 \text { to } 3 \\ & 1.045 \text { to } 3 \\ & 1.049 \text { to } 3 \\ & 1.053 \text { to } 3 \end{aligned}$	$\begin{aligned} & 1.861 \\ & 1.679 \\ & 1.574 \\ & 1.337 \\ & 1.142 \end{aligned}$	$\begin{aligned} & 405.8 \\ & 419.1 \\ & 426.8 \\ & 448.0 \\ & 469.2 \end{aligned}$	$\begin{aligned} & 2671 \\ & 2676 \\ & 2679 \\ & 2687 \\ & 2694 \end{aligned}$	$\begin{aligned} & 1.271 \\ & 1.307 \\ & 1.328 \\ & 1.384 \\ & 1.439 \end{aligned}$	$\begin{aligned} & 7.394 \\ & 7.356 \\ & 7.333 \\ & 7.275 \\ & 7.210 \end{aligned}$
$\begin{aligned} & 390 \\ & 400 \\ & 410 \\ & 420 \\ & 430 \end{aligned}$	$\begin{aligned} & 1.794 \\ & 2.455 \\ & 3.302 \\ & 4.370 \\ & 5.699 \end{aligned}$	$\begin{aligned} & 1.058 \text { to } 3 \\ & 1.067 \text { to } 3 \\ & 1.077 \text { to } 3 \\ & 1.088 \text { to } 3 \\ & 1.099 \text { to } 3 \end{aligned}$	$\begin{aligned} & 0.980 \\ & 0.731 \\ & 0.553 \\ & 0.425 \\ & 0.331 \end{aligned}$	$\begin{aligned} & 490.4 \\ & 532.9 \\ & 575.6 \\ & 618.6 \\ & 661.8 \end{aligned}$	$\begin{aligned} & 2702 \\ & 2716 \\ & 2729 \\ & 2742 \\ & 2753 \end{aligned}$	$\begin{aligned} & 1.494 \\ & 1.605 \\ & 1.708 \\ & 1.810 \\ & 1.911 \end{aligned}$	$\begin{aligned} & \hline 7.163 \\ & 7.058 \\ & 6.959 \\ & 6.865 \\ & 6775 \end{aligned}$
$\begin{aligned} & 440 \\ & 450 \\ & 460 \\ & 470 \\ & 480 \end{aligned}$	$\begin{aligned} & 7.333 \\ & 9.319 \\ & 11.71 \\ & 14.55 \\ & 17.90 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.110 \text { to } 3 \\ & 1.123 \text { to } 3 \\ & 1.137 \text { to } 3 \\ & 1.152 \text { to } 3 \\ & 1.167 \text { to } 3 \end{aligned}$	0.261 0.208 0.167 0.136 0.111	$\begin{aligned} & 705.3 \\ & 749.2 \\ & 793.5 \\ & 838.2 \\ & 883.4 \end{aligned}$	$\begin{aligned} & 2764 \\ & 2773 \\ & 2782 \\ & 2789 \\ & 2795 \end{aligned}$	$\begin{aligned} & 2.011 \\ & 2.109 \\ & 2.205 \\ & 2.301 \\ & 2.395 \end{aligned}$	$\begin{aligned} & 6.689 \\ & 6.607 \\ & 6.528 \\ & 6.451 \\ & 6.377 \end{aligned}$
$\begin{aligned} & \hline 490 \\ & 500 \\ & 510 \\ & 520 \\ & 530 \end{aligned}$	$\begin{aligned} & 21.83 \\ & 26.40 \\ & 31.66 \\ & 37.70 \\ & 44.58 \end{aligned}$	$\begin{aligned} & 1.184 \text { to } 3 \\ & 1.203 \text { to } 3 \\ & 1.222 \text { to } 3 \\ & 1.244 \text { to } 3 \\ & 1.268 \text { to } 3 \end{aligned}$	$\begin{aligned} & 0.0922 \\ & 0.0776 \\ & 0.0631 \\ & 0.0525 \\ & 0.0445 \end{aligned}$	$\begin{aligned} & \hline 929.1 \\ & 975.6 \\ & 1023 \\ & 1071 \\ & 1119 \end{aligned}$	$\begin{aligned} & 2799 \\ & 2801 \\ & 2802 \\ & 2801 \\ & 2798 \end{aligned}$	$\begin{aligned} & 2.479 \\ & 2.581 \\ & 2.673 \\ & 2.765 \\ & 2.856 \end{aligned}$	$\begin{aligned} & 6.312 \\ & 6.233 \\ & 6.163 \\ & 6.093 \\ & 6.023 \end{aligned}$
$\begin{aligned} & 540 \\ & 550 \\ & 560 \\ & 570 \\ & 580 \end{aligned}$	$\begin{aligned} & 52.38 \\ & 61.19 \\ & 71.08 \\ & 82.16 \\ & 94.51 \end{aligned}$	$\begin{aligned} & 1.294 \text { to } 3 \\ & 1.323 \text { to } 3 \\ & 1.355 \text { to } 3 \\ & 1.392 \text { to } 3 \\ & 1.433 \text { to } 3 \end{aligned}$	$\begin{aligned} & 0.0375 \\ & 0.0317 \\ & 0.0269 \\ & 0.0228 \\ & 0.0193 \end{aligned}$	$\begin{aligned} & 1170 \\ & 1220 \\ & 1273 \\ & 1328 \\ & 1384 \end{aligned}$	2792 2784 2772 2757 2737	$\begin{aligned} & 2.948 \\ & 3.039 \\ & 3.132 \\ & 3.225 \\ & 3.321 \end{aligned}$	$\begin{aligned} & \hline 5.953 \\ & 5.882 \\ & 5.808 \\ & 5.733 \\ & 5.654 \end{aligned}$
$\begin{aligned} & 590 \\ & 600 \\ & 610 \\ & 620 \\ & 625 \end{aligned}$	$\begin{aligned} & 108.3 \\ & 123.5 \\ & 137.3 \\ & 159.1 \\ & 169.1 \end{aligned}$	$\begin{aligned} & 1.482 \text { to } 3 \\ & 1.541 \text { to } 3 \\ & 1.612 \text { to } 3 \\ & 1.705 \text { to } 3 \\ & 1.778 \text { to } 3 \end{aligned}$	0.0163 0.0137 0.0115 0.0094 0.0085	$\begin{aligned} & 1443 \\ & 1506 \\ & 1573 \\ & 1647 \\ & 1697 \end{aligned}$	$\begin{aligned} & 2717 \\ & 2682 \\ & 2641 \\ & 2588 \\ & 2555 \end{aligned}$	$\begin{aligned} & 3.419 \\ & 3.520 \\ & 3.627 \\ & 3.741 \\ & 3.805 \end{aligned}$	$\begin{aligned} & 5.569 \\ & 5.480 \\ & 5.318 \\ & 5.259 \\ & 5.191 \\ & \hline \end{aligned}$
$\begin{gathered} 630 \\ 635 \\ 640 \\ 645 \\ 647.31 \end{gathered}$	$\begin{aligned} & 179.1 \\ & 190.9 \\ & 202.7 \\ & 215.2 \\ & 221.2 \end{aligned}$	$\begin{aligned} & 1.856 \text { to } 3 \\ & 1.935 \text { to } 3 \\ & 2.075 \text { to } 3 \\ & 2.351 \text { to } 3 \\ & 3.170 \text { to } 3 \end{aligned}$	$\begin{aligned} & 0.0075 \\ & 0.0066 \\ & 0.0057 \\ & 0.0045 \\ & 0.0032 \end{aligned}$	$\begin{aligned} & 1734 \\ & 1783 \\ & 1841 \\ & 1931 \\ & 2107 \end{aligned}$	$\begin{aligned} & 2515 \\ & 2466 \\ & 2401 \\ & 2292 \\ & 2107 \end{aligned}$	$\begin{aligned} & 3.875 \\ & 3.950 \\ & 4.037 \\ & 4.223 \\ & 4.443 \end{aligned}$	$\begin{aligned} & 5.115 \\ & 5.025 \\ & 4.912 \\ & 4.732 \\ & 4.443 \end{aligned}$

TECHNICAL

Conversions, Equivalents, and Physical Data

Properties of Superheated Steam (continued)														
$\begin{aligned} & \hline \text { PRESSURE } \\ & \text { (PSI) } \end{aligned}$		SAT. TEMP. ${ }^{\circ} \mathrm{F}$	TOTAL TEMPERATURE - ${ }^{\circ} \mathrm{F}$											
Absolute P'	Gauge P			500°	540°	600°	640°	660°	700°	740°	800°	900°	1000°	1200°
380.0	365.3	439.60	$\begin{gathered} \nabla \\ \eta \gamma \end{gathered}$	$\begin{aligned} & 1.3616 \\ & 1247.7 \end{aligned}$	$\begin{aligned} & 1.4444 \\ & 1273.1 \end{aligned}$	$\begin{aligned} & 1.5605 \\ & 1308.5 \end{aligned}$	$\begin{aligned} & 1.6345 \\ & 1331.0 \end{aligned}$	$\begin{aligned} & 1.6707 \\ & 1342.0 \end{aligned}$	$\begin{aligned} & 1.7419 \\ & 1363.8 \end{aligned}$	$\begin{aligned} & 1.8118 \\ & 1385.3 \end{aligned}$	$\begin{aligned} & 1.9149 \\ & 1417.3 \end{aligned}$	$\begin{gathered} 2.083 \\ 1470.1 \end{gathered}$	$\begin{gathered} 2.249 \\ 1523.0 \end{gathered}$	$\begin{gathered} 2.575 \\ 1630.0 \end{gathered}$
400.0	385.3	444.59	$\begin{aligned} & \nabla \\ & h_{9} \end{aligned}$	$\begin{aligned} & 1.2851 \\ & 1245.1 \end{aligned}$	$\begin{aligned} & 1.3652 \\ & 1271.0 \end{aligned}$	$\begin{aligned} & 1.4770 \\ & 1306.9 \end{aligned}$	$\begin{aligned} & 1.5480 \\ & 1329.6 \end{aligned}$	$\begin{aligned} & 1.5827 \\ & 1340.8 \end{aligned}$	$\begin{aligned} & 1.6508 \\ & 1362.7 \end{aligned}$	$\begin{aligned} & 1.7177 \\ & 1384.3 \end{aligned}$	$\begin{aligned} & 1.8161 \\ & 1416.4 \end{aligned}$	$\begin{aligned} & 1.9767 \\ & 1469.4 \end{aligned}$	$\begin{gathered} 2.134 \\ 1522.4 \end{gathered}$	$\begin{gathered} 2.445 \\ 1629.6 \end{gathered}$
420.0	405.3	449.39	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	$\begin{aligned} & 1.2158 \\ & 1242.5 \end{aligned}$	$\begin{aligned} & 1.2935 \\ & 1268.9 \end{aligned}$	$\begin{aligned} & 1.4014 \\ & 1305.3 \end{aligned}$	$\begin{aligned} & 1.4697 \\ & 1328.3 \end{aligned}$	$\begin{aligned} & 1.5030 \\ & 1339.5 \end{aligned}$	$\begin{aligned} & 1.5684 \\ & 1361.6 \end{aligned}$	$\begin{aligned} & 1.6324 \\ & 1383.3 \end{aligned}$	$\begin{aligned} & 1.7267 \\ & 1415.5 \end{aligned}$	$\begin{aligned} & 1.8802 \\ & 1468.7 \end{aligned}$	$\begin{gathered} 2.031 \\ 1521.9 \end{gathered}$	$\begin{gathered} 2.327 \\ 1629.2 \end{gathered}$
440.0	425.3	454.02	$\begin{aligned} & \nabla \\ & h_{g} \end{aligned}$	$\begin{aligned} & 1.1526 \\ & 1239.8 \end{aligned}$	$\begin{aligned} & 1.2282 \\ & 1266.7 \end{aligned}$	$\begin{aligned} & 1.3327 \\ & 1303.6 \end{aligned}$	$\begin{aligned} & 1.3984 \\ & 1326.9 \end{aligned}$	$\begin{aligned} & 1.4306 \\ & 1338.2 \end{aligned}$	$\begin{aligned} & 1.4934 \\ & 1360.4 \end{aligned}$	$\begin{aligned} & 1.5549 \\ & 1382.3 \end{aligned}$	$\begin{aligned} & 1.6454 \\ & 1414.7 \end{aligned}$	$\begin{aligned} & 1.7925 \\ & 1468.1 \end{aligned}$	$\begin{aligned} & 1.9368 \\ & 1521.3 \end{aligned}$	$\begin{gathered} 2.220 \\ 1628.8 \end{gathered}$
460.0	445.3	458.5	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	$\begin{aligned} & 1.0948 \\ & 1237.0 \end{aligned}$	$\begin{aligned} & 1.1685 \\ & 1264.5 \end{aligned}$	$\begin{aligned} & 1.2698 \\ & 1302.0 \end{aligned}$	$\begin{aligned} & 1.3334 \\ & 1325.4 \end{aligned}$	$\begin{aligned} & 1.3644 \\ & 1336.9 \end{aligned}$	$\begin{aligned} & 1.4250 \\ & 1359.3 \end{aligned}$	$\begin{aligned} & 1.4842 \\ & 1381.3 \end{aligned}$	$\begin{aligned} & 1.5711 \\ & 1413.8 \end{aligned}$	$\begin{aligned} & 1.7124 \\ & 1467.4 \end{aligned}$	$\begin{aligned} & 1.8508 \\ & 1520.7 \end{aligned}$	$\begin{gathered} 2.122 \\ 1628.4 \end{gathered}$
480.0	465.3	462.82	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0417 \\ & 1234.2 \end{aligned}$	$\begin{aligned} & 1.1138 \\ & 1262.3 \end{aligned}$	$\begin{aligned} & 1.2122 \\ & 1300.3 \end{aligned}$	$\begin{aligned} & 1.2737 \\ & 1324.0 \end{aligned}$	$\begin{aligned} & 1.3038 \\ & 1335.6 \end{aligned}$	$\begin{aligned} & 1.3622 \\ & 1358.2 \end{aligned}$	$\begin{aligned} & 1.4193 \\ & 1380.3 \end{aligned}$	$\begin{aligned} & 1.5031 \\ & 1412.9 \end{aligned}$	$\begin{aligned} & 1.6390 \\ & 1466.7 \end{aligned}$	$\begin{aligned} & 1.7720 \\ & 1520.2 \end{aligned}$	$\begin{gathered} 2.033 \\ 1628.0 \end{gathered}$
500.0	485.3	467.01	$\begin{array}{\|c\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.9927 \\ & 1231.3 \end{aligned}$	$\begin{aligned} & 1.0633 \\ & 1260.0 \end{aligned}$	$\begin{aligned} & 1.1591 \\ & 1298.6 \end{aligned}$	$\begin{aligned} & 1.2188 \\ & 1322.6 \end{aligned}$	$\begin{aligned} & 1.2478 \\ & 1334.2 \end{aligned}$	$\begin{aligned} & 1.3044 \\ & 1357.0 \end{aligned}$	$\begin{aligned} & 1.3596 \\ & 1379.3 \end{aligned}$	$\begin{aligned} & 1.4405 \\ & 1412.1 \end{aligned}$	$\begin{aligned} & 1.5715 \\ & 1466.0 \end{aligned}$	$\begin{aligned} & 1.6996 \\ & 1519.6 \end{aligned}$	$\begin{aligned} & 1.9504 \\ & 1627.6 \end{aligned}$
520.0	505.3	471.07	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	$\begin{aligned} & 0.9473 \\ & 1228.3 \end{aligned}$	$\begin{aligned} & 1.0166 \\ & 1257.7 \end{aligned}$	$\begin{aligned} & 1.1101 \\ & 1296.9 \end{aligned}$	$\begin{aligned} & 1.1681 \\ & 1321.1 \end{aligned}$	$\begin{aligned} & 1.1962 \\ & 1332.9 \end{aligned}$	$\begin{aligned} & 1.2511 \\ & 1355.8 \end{aligned}$	$\begin{aligned} & 1.3045 \\ & 1378.2 \end{aligned}$	$\begin{aligned} & 1.3826 \\ & 1411.2 \end{aligned}$	$\begin{aligned} & 1.5091 \\ & 1465.3 \end{aligned}$	$\begin{gathered} 1.636 \\ 1519.0 \end{gathered}$	$\begin{aligned} & 1.8743 \\ & 1627.2 \end{aligned}$
540.0	525.3	475.01	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9052 \\ & 1225.3 \end{aligned}$	$\begin{aligned} & 0.9733 \\ & 1255.4 \end{aligned}$	$\begin{aligned} & 1.0646 \\ & 1295.2 \end{aligned}$	$\begin{aligned} & 1.1211 \\ & 1319.7 \end{aligned}$	$\begin{aligned} & 1.1485 \\ & 1331.5 \end{aligned}$	$\begin{aligned} & 1.2017 \\ & 1354.6 \end{aligned}$	$\begin{aligned} & 1.2535 \\ & 1377.2 \end{aligned}$	$\begin{aligned} & 1.3291 \\ & 1410.3 \end{aligned}$	$\begin{aligned} & 1.4514 \\ & 1464.6 \end{aligned}$	$\begin{aligned} & 1.5707 \\ & 1518.5 \end{aligned}$	$\begin{aligned} & 1.8039 \\ & 1626.8 \end{aligned}$
560.0	545.3	478.85	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.8659 \\ & 1222.2 \end{aligned}$	$\begin{aligned} & 0.9330 \\ & 1253.0 \end{aligned}$	$\begin{aligned} & 1.0224 \\ & 1293.4 \end{aligned}$	$\begin{aligned} & 1.0775 \\ & 1318.2 \end{aligned}$	$\begin{aligned} & 1.1041 \\ & 1330.2 \end{aligned}$	$\begin{aligned} & 1.1558 \\ & 1353.5 \end{aligned}$	$\begin{aligned} & 1.2060 \\ & 1376.1 \end{aligned}$	$\begin{aligned} & 1.2794 \\ & 1409.4 \end{aligned}$	$\begin{aligned} & 1.3978 \\ & 1463.9 \end{aligned}$	$\begin{aligned} & 1.5132 \\ & 1517.9 \end{aligned}$	$\begin{aligned} & 1.7385 \\ & 1626.4 \end{aligned}$
580.0	565.3	482.58	$\begin{aligned} & \nabla \\ & h_{g} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8291 \\ & 1219.0 \end{aligned}$	$\begin{aligned} & 0.8954 \\ & 1250.5 \end{aligned}$	$\begin{aligned} & 0.9830 \\ & 1291.7 \end{aligned}$	$\begin{aligned} & 1.0368 \\ & 1316.7 \end{aligned}$	$\begin{aligned} & 1.0627 \\ & 1328.8 \end{aligned}$	$\begin{aligned} & 1.1331 \\ & 1352.3 \end{aligned}$	$\begin{aligned} & 1.1619 \\ & 1375.1 \end{aligned}$	$\begin{aligned} & 1.2331 \\ & 1408.6 \end{aligned}$	$\begin{aligned} & 1.3479 \\ & 1463.2 \end{aligned}$	$\begin{aligned} & 1.4596 \\ & 1517.3 \end{aligned}$	$\begin{aligned} & 1.6776 \\ & 1626.0 \end{aligned}$
600.0	585.3	486.21	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	$\begin{aligned} & 0.7947 \\ & 1215.7 \end{aligned}$	$\begin{aligned} & 0.8602 \\ & 1248.1 \end{aligned}$	$\begin{aligned} & 0.9463 \\ & 1289.9 \end{aligned}$	$\begin{aligned} & 0.9988 \\ & 1315.2 \end{aligned}$	$\begin{aligned} & 1.0241 \\ & 1327.4 \end{aligned}$	$\begin{aligned} & 1.0732 \\ & 1351.1 \end{aligned}$	$\begin{aligned} & 1.1207 \\ & 1374.0 \end{aligned}$	$\begin{aligned} & 1.1899 \\ & 1407.7 \end{aligned}$	$\begin{aligned} & 1.3013 \\ & 1462.5 \end{aligned}$	$\begin{aligned} & 1.4096 \\ & 1516.7 \end{aligned}$	$\begin{aligned} & 1.6208 \\ & 1625.5 \end{aligned}$
620.0	605.0	489.75	$\begin{aligned} & \nabla \\ & h_{g} \end{aligned}$	$\begin{aligned} & 0.7624 \\ & 1212.4 \end{aligned}$	$\begin{aligned} & 0.8272 \\ & 1245.5 \end{aligned}$	$\begin{aligned} & 0.9118 \\ & 1288.1 \end{aligned}$	$\begin{aligned} & 0.9633 \\ & 1313.7 \end{aligned}$	$\begin{aligned} & 0.9880 \\ & 1326.0 \end{aligned}$	$\begin{aligned} & 1.0358 \\ & 1349.9 \end{aligned}$	$\begin{aligned} & 1.0821 \\ & 1373.0 \end{aligned}$	$\begin{aligned} & 1.1494 \\ & 1406.8 \end{aligned}$	$\begin{aligned} & 1.2577 \\ & 1461.8 \end{aligned}$	$\begin{aligned} & 1.3628 \\ & 1516.2 \end{aligned}$	$\begin{aligned} & 1.5676 \\ & 1625.1 \end{aligned}$
640.0	625.3	493.21	$\begin{gathered} \nabla \\ \mathrm{h}_{\mathrm{g}} \end{gathered}$	$\begin{aligned} & 0.7319 \\ & 1209.0 \end{aligned}$	$\begin{aligned} & 0.7963 \\ & 1243.0 \end{aligned}$	$\begin{aligned} & 0.8795 \\ & 1296.2 \end{aligned}$	$\begin{aligned} & 0.9299 \\ & 1312.2 \end{aligned}$	$\begin{aligned} & 0.9541 \\ & 1324.6 \end{aligned}$	$\begin{aligned} & 1.0008 \\ & 1348.6 \end{aligned}$	$\begin{aligned} & 1.0459 \\ & 1371.9 \end{aligned}$	$\begin{aligned} & 1.1115 \\ & 1405.9 \end{aligned}$	$\begin{aligned} & 1.2168 \\ & 1461.1 \end{aligned}$	$\begin{aligned} & 1.3190 \\ & 1515.6 \end{aligned}$	$\begin{aligned} & 1.5178 \\ & 1624.7 \end{aligned}$
660.0	645.3	496.58	$\begin{aligned} & \nabla \\ & h_{g} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7032 \\ & 1205.4 \end{aligned}$	$\begin{aligned} & 0.7670 \\ & 1240.4 \end{aligned}$	$\begin{aligned} & 0.8491 \\ & 1284.4 \end{aligned}$	$\begin{aligned} & 0.8985 \\ & 1310.6 \end{aligned}$	$\begin{aligned} & 0.9222 \\ & 1323.2 \end{aligned}$	$\begin{aligned} & 0.9679 \\ & 1347.4 \end{aligned}$	$\begin{aligned} & 1.0119 \\ & 1370.8 \end{aligned}$	$\begin{aligned} & 1.0759 \\ & 1405.0 \end{aligned}$	$\begin{aligned} & 1.1784 \\ & 1460.4 \end{aligned}$	$\begin{aligned} & 1.2778 \\ & 1515.0 \end{aligned}$	$\begin{aligned} & 1.4709 \\ & 1624.3 \end{aligned}$
680.0	665.3	499.88	$\begin{array}{\|c\|} \hline \nabla \\ h_{g} \end{array}$	$\begin{aligned} & 0.6759 \\ & 1201.8 \end{aligned}$	$\begin{aligned} & 0.7395 \\ & 1237.7 \end{aligned}$	$\begin{aligned} & 0.8205 \\ & 1282.5 \end{aligned}$	$\begin{aligned} & 0.8690 \\ & 1309.1 \end{aligned}$	$\begin{aligned} & 0.8922 \\ & 1321.7 \end{aligned}$	$\begin{aligned} & 0.9369 \\ & 1346.2 \end{aligned}$	$\begin{aligned} & 0.9800 \\ & 1369.8 \end{aligned}$	$\begin{aligned} & 1.0424 \\ & 1404.1 \end{aligned}$	$\begin{aligned} & 1.1423 \\ & 1459.7 \end{aligned}$	$\begin{aligned} & 1.2390 \\ & 1514.5 \end{aligned}$	$\begin{aligned} & 1.4269 \\ & 1623.9 \end{aligned}$
700.0	685.3	503.10	$\begin{array}{\|c\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	---	$\begin{aligned} & 0.7134 \\ & 1235.0 \end{aligned}$	$\begin{aligned} & 0.7934 \\ & 1280.6 \end{aligned}$	$\begin{aligned} & 0.8411 \\ & 1307.5 \end{aligned}$	$\begin{aligned} & 0.8639 \\ & 1320.3 \end{aligned}$	$\begin{aligned} & 0.9077 \\ & 1345.0 \end{aligned}$	$\begin{aligned} & 0.9498 \\ & 1368.7 \end{aligned}$	$\begin{aligned} & 1.0108 \\ & 1403.2 \end{aligned}$	$\begin{aligned} & 1.1082 \\ & 1459.0 \end{aligned}$	$\begin{aligned} & 1.2024 \\ & 1513.9 \end{aligned}$	$\begin{aligned} & 1.3853 \\ & 1623.5 \end{aligned}$
750.	735.3	510.86	$\begin{gathered} \nabla \\ \mathrm{h}_{\mathrm{g}} \end{gathered}$	---	$\begin{aligned} & 0.6540 \\ & 1227.9 \end{aligned}$	$\begin{aligned} & 0.7319 \\ & 1275.7 \end{aligned}$	$\begin{aligned} & 0.7778 \\ & 1303.5 \end{aligned}$	$\begin{aligned} & 0.7996 \\ & 1316.6 \end{aligned}$	$\begin{aligned} & 0.8414 \\ & 1341.8 \end{aligned}$	$\begin{aligned} & 0.8813 \\ & 1366.0 \end{aligned}$	$\begin{aligned} & 0.9391 \\ & 1400.9 \end{aligned}$	$\begin{aligned} & 1.0310 \\ & 1457.2 \end{aligned}$	$\begin{aligned} & 1.1196 \\ & 1512.4 \end{aligned}$	$\begin{aligned} & 1.2912 \\ & 1622.4 \end{aligned}$
800.0	785.3	518.23	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	---	$\begin{aligned} & 0.6015 \\ & 1220.5 \end{aligned}$	$\begin{aligned} & 0.6779 \\ & 1270.7 \end{aligned}$	$\begin{aligned} & 0.7223 \\ & 1299.4 \end{aligned}$	$\begin{aligned} & 0.7433 \\ & 1312.9 \end{aligned}$	$\begin{aligned} & 0.7833 \\ & 1338.6 \end{aligned}$	$\begin{aligned} & 0.8215 \\ & 1363.2 \end{aligned}$	$\begin{aligned} & 0.8763 \\ & 1398.6 \end{aligned}$	$\begin{aligned} & 0.9633 \\ & 1455.4 \end{aligned}$	$\begin{aligned} & 1.0470 \\ & 1511.0 \end{aligned}$	$\begin{aligned} & 1.2088 \\ & 1621.4 \end{aligned}$
850.0	835.3	525.26	$\begin{aligned} & \nabla \\ & h_{g} \end{aligned}$	---	$\begin{aligned} & 0.5546 \\ & 1212.7 \end{aligned}$	$\begin{aligned} & 0.6301 \\ & 1265.5 \end{aligned}$	$\begin{aligned} & 0.6732 \\ & 1295.2 \end{aligned}$	$\begin{aligned} & 0.6934 \\ & 1309.0 \end{aligned}$	$\begin{aligned} & 0.7320 \\ & 1335.4 \end{aligned}$	$\begin{aligned} & 0.7685 \\ & 1360.4 \end{aligned}$	$\begin{aligned} & 0.8209 \\ & 1396.3 \end{aligned}$	$\begin{aligned} & 0.9037 \\ & 1453.6 \end{aligned}$	$\begin{aligned} & 0.9830 \\ & 1509.5 \end{aligned}$	$\begin{aligned} & 1.1360 \\ & 1620.4 \end{aligned}$
90.0	885.3	531.98	$\begin{gathered} \nabla \\ \mathrm{h}_{\mathrm{g}} \end{gathered}$	---	$\begin{aligned} & 0.5124 \\ & 1204.4 \end{aligned}$	$\begin{aligned} & 0.5873 \\ & 1260.1 \end{aligned}$	$\begin{aligned} & 0.6294 \\ & 1290.9 \end{aligned}$	$\begin{aligned} & 0.6491 \\ & 1305.1 \end{aligned}$	$\begin{aligned} & 0.6863 \\ & 1332.1 \end{aligned}$	$\begin{aligned} & 0.7215 \\ & 1357.5 \end{aligned}$	$\begin{aligned} & 0.7716 \\ & 1393.9 \end{aligned}$	$\begin{aligned} & 0.8506 \\ & 1451.8 \end{aligned}$	$\begin{aligned} & 0.9262 \\ & 1508.1 \end{aligned}$	$\begin{aligned} & 1.0714 \\ & 1619.3 \end{aligned}$
950.0	935.3	538.42	$\begin{gathered} \nabla \\ \mathrm{h}_{\mathrm{g}} \\ \hline \end{gathered}$	---	$\begin{aligned} & 0.4740 \\ & 1195.5 \end{aligned}$	$\begin{aligned} & 0.5489 \\ & 1254.6 \end{aligned}$	$\begin{aligned} & 0.5901 \\ & 1286.4 \end{aligned}$	$\begin{aligned} & 0.6092 \\ & 1301.1 \end{aligned}$	$\begin{aligned} & 0.6453 \\ & 1328.7 \end{aligned}$	$\begin{aligned} & 0.6793 \\ & 1354.7 \end{aligned}$	$\begin{aligned} & 0.7275 \\ & 1391.6 \end{aligned}$	$\begin{aligned} & 0.8031 \\ & 1450.0 \end{aligned}$	$\begin{aligned} & 0.8753 \\ & 1506.6 \end{aligned}$	$\begin{aligned} & 1.0136 \\ & 1618.3 \end{aligned}$
1000.0	985.3	544.61	$\begin{aligned} & \nabla \\ & \mathrm{h}_{\mathrm{g}} \end{aligned}$	---	$\begin{gathered} -- \\ -- \end{gathered}$	$\begin{aligned} & 0.5140 \\ & 1248.8 \end{aligned}$	$\begin{aligned} & 0.5546 \\ & 1281.9 \end{aligned}$	$\begin{aligned} & 0.5733 \\ & 1297.0 \end{aligned}$	$\begin{aligned} & 0.6084 \\ & 1325.3 \end{aligned}$	$\begin{aligned} & 0.6413 \\ & 1351.7 \end{aligned}$	$\begin{aligned} & 0.6878 \\ & 1389.2 \end{aligned}$	$\begin{aligned} & 0.7604 \\ & 1448.2 \end{aligned}$	$\begin{aligned} & 0.8294 \\ & 1505.1 \end{aligned}$	$\begin{aligned} & 0.9615 \\ & 1617.3 \end{aligned}$
$\nabla=$ specific volume, cubic feet per pound $\mathrm{h}_{\rho}=$ total heat of steam, BTU per pound														

- continued -

TECHNICAL

Conversions, Equivalents, and Physical Data

Properties of Superheated Steam (continued)														
$\begin{gathered} \hline \text { PRESSURE } \\ \text { (PSI) } \\ \hline \end{gathered}$		$\begin{aligned} & \text { SAT. } \\ & \text { TEMP. } \\ & { }^{\circ} \mathrm{F} \end{aligned}$	TOTAL TEMPERATURE - ${ }^{\circ} \mathrm{F}(\mathrm{t})$											
$\begin{array}{\|c\|} \hline \text { Absolute } \\ \mathbf{P}^{\prime} \end{array}$	Gauge			660°	700°	740°	760°	780°	800°	860°	900°	1000°	1100°	1200°
1100.0	1085.3	556.31	$\begin{array}{\|l} \hline \nabla \\ h_{g} \end{array}$	$\begin{aligned} & 0.5110 \\ & 1288.5 \end{aligned}$	$\begin{aligned} & 0.5445 \\ & 1318.3 \end{aligned}$	$\begin{aligned} & 0.5755 \\ & 1345.8 \end{aligned}$	$\begin{aligned} & 0.5904 \\ & 1358.9 \end{aligned}$	$\begin{aligned} & 0.6049 \\ & 1371.7 \end{aligned}$	$\begin{aligned} & 0.6191 \\ & 1384.3 \end{aligned}$	$\begin{aligned} & 0.6601 \\ & 1420.8 \end{aligned}$	$\begin{aligned} & 0.6866 \\ & 1444.5 \end{aligned}$	$\begin{aligned} & 0.7503 \\ & 1502.2 \end{aligned}$	$\begin{aligned} & 0.8117 \\ & 1558.8 \end{aligned}$	$\begin{aligned} & 0.8716 \\ & 1615.2 \end{aligned}$
1200.0	1185.3	567.22	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.4586 \\ & 1279.6 \end{aligned}$	$\begin{aligned} & 0.4909 \\ & 1311.0 \end{aligned}$	$\begin{aligned} & 0.5206 \\ & 1339.6 \end{aligned}$	$\begin{aligned} & 0.5347 \\ & 1353.2 \end{aligned}$	$\begin{aligned} & 0.5484 \\ & 1366.4 \end{aligned}$	$\begin{aligned} & 0.5617 \\ & 1379.3 \end{aligned}$	$\begin{aligned} & 0.6003 \\ & 1416.7 \end{aligned}$	$\begin{aligned} & 0.6250 \\ & 1440.7 \end{aligned}$	$\begin{aligned} & 0.6843 \\ & 1499.2 \end{aligned}$	$\begin{aligned} & 0.7412 \\ & 1556.4 \end{aligned}$	$\begin{aligned} & 0.7967 \\ & 1613.1 \end{aligned}$
1300.0	1285.3	577.46	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.4139 \\ & 1270.2 \end{aligned}$	$\begin{aligned} & 0.4454 \\ & 1303.4 \end{aligned}$	$\begin{aligned} & 0.4739 \\ & 1333.3 \end{aligned}$	$\begin{aligned} & 0.4874 \\ & 1347.3 \end{aligned}$	$\begin{aligned} & 0.5004 \\ & 1361.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5131 \\ & 1374.3 \end{aligned}$	$\begin{aligned} & 0.5496 \\ & 1412.5 \end{aligned}$	$\begin{aligned} & 0.5728 \\ & 1437.0 \end{aligned}$	$\begin{aligned} & 0.6284 \\ & 1496.2 \end{aligned}$	$\begin{aligned} & 0.6816 \\ & 1553.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.7333 \\ & 1611.0 \end{aligned}$
1400.0	1385.3	587.10	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.3753 \\ & 1260.3 \end{aligned}$	$\begin{aligned} & 0.4062 \\ & 1295.5 \end{aligned}$	$\begin{aligned} & 0.4338 \\ & 1326.7 \end{aligned}$	$\begin{aligned} & 0.4468 \\ & 1341.3 \end{aligned}$	$\begin{aligned} & 0.4593 \\ & 1355.4 \end{aligned}$	$\begin{aligned} & 0.4714 \\ & 1369.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5061 \\ & 1408.2 \end{aligned}$	$\begin{aligned} & 0.5281 \\ & 1433.1 \end{aligned}$	$\begin{aligned} & 0.5805 \\ & 1493.2 \end{aligned}$	$\begin{aligned} & 0.6305 \\ & 1551.4 \end{aligned}$	$\begin{aligned} & 0.6789 \\ & 1689.9 \end{aligned}$
1500.0	1485.3	596.23	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.3413 \\ & 1249.8 \end{aligned}$	$\begin{aligned} & \hline 0.3719 \\ & 1287.2 \end{aligned}$	$\begin{aligned} & 0.3989 \\ & 1320.0 \end{aligned}$	$\begin{aligned} & 0.4114 \\ & 1335.2 \end{aligned}$	$\begin{aligned} & 0.4235 \\ & 1349.7 \end{aligned}$	$\begin{aligned} & 0.4352 \\ & 1363.8 \end{aligned}$	$\begin{aligned} & 0.4684 \\ & 1403.9 \end{aligned}$	$\begin{aligned} & 0.4893 \\ & 1429.3 \end{aligned}$	$\begin{aligned} & 0.5390 \\ & 1490.1 \end{aligned}$	$\begin{aligned} & 0.5862 \\ & 1548.9 \end{aligned}$	$\begin{aligned} & 0.6318 \\ & 1606.8 \end{aligned}$
1600.0	1585.3	604.90	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.3112 \\ & 1238.7 \end{aligned}$	$\begin{aligned} & 0.3417 \\ & 1278.7 \end{aligned}$	$\begin{aligned} & 0.3682 \\ & 1313.0 \end{aligned}$	$\begin{aligned} & 0.3804 \\ & 1328.8 \end{aligned}$	$\begin{aligned} & 0.3921 \\ & 1343.9 \end{aligned}$	$\begin{aligned} & 0.4034 \\ & 1358.4 \end{aligned}$	$\begin{aligned} & 0.4353 \\ & 1399.5 \end{aligned}$	$\begin{aligned} & 0.4553 \\ & 1425.3 \end{aligned}$	$\begin{aligned} & 0.5027 \\ & 1487.0 \end{aligned}$	$\begin{aligned} & 0.5474 \\ & 1546.4 \end{aligned}$	$\begin{aligned} & 0.5906 \\ & 1604.6 \end{aligned}$
1700.0	1685.3	613.15	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.2842 \\ & 1226.8 \end{aligned}$	$\begin{aligned} & 0.3148 \\ & 1269.7 \end{aligned}$	$\begin{aligned} & 0.3410 \\ & 1305.8 \end{aligned}$	$\begin{aligned} & 0.3529 \\ & 1322.3 \end{aligned}$	$\begin{aligned} & 0.3643 \\ & 1337.9 \end{aligned}$	$\begin{aligned} & 0.3753 \\ & 1352.9 \end{aligned}$	$\begin{aligned} & 0.4061 \\ & 1395.0 \end{aligned}$	$\begin{aligned} & 0.4253 \\ & 1421.4 \end{aligned}$	$\begin{aligned} & 0.4706 \\ & 1484.0 \end{aligned}$	$\begin{aligned} & 0.5132 \\ & 1543.8 \end{aligned}$	$\begin{aligned} & 0.5542 \\ & 1602.5 \end{aligned}$
1800.0	1785.3	621.03	$\begin{array}{\|l} \hline \begin{array}{l} \nabla \\ h_{g} \\ \hline \end{array} \\ \hline \end{array}$	$\begin{aligned} & 0.2597 \\ & 1214.0 \end{aligned}$	$\begin{aligned} & 0.2907 \\ & 1260.3 \end{aligned}$	$\begin{aligned} & 0.3166 \\ & 1298.4 \end{aligned}$	$\begin{aligned} & 0.3284 \\ & 1315.5 \end{aligned}$	$\begin{aligned} & 0.3395 \\ & 1331.8 \end{aligned}$	$\begin{aligned} & 0.3502 \\ & 1347.2 \end{aligned}$	$\begin{aligned} & 0.3801 \\ & 1390.4 \end{aligned}$	$\begin{aligned} & 0.3986 \\ & 1417.4 \end{aligned}$	$\begin{aligned} & 0.4421 \\ & 1480.8 \end{aligned}$	$\begin{aligned} & 0.4828 \\ & 1541.3 \end{aligned}$	$\begin{aligned} & 0.5218 \\ & 1600.4 \end{aligned}$
1900.0	1885.3	628.58	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.2371 \\ & 1200.2 \end{aligned}$	$\begin{aligned} & 0.2688 \\ & 1250.4 \end{aligned}$	$\begin{aligned} & 0.2947 \\ & 1290.6 \end{aligned}$	$\begin{aligned} & 0.3063 \\ & 1308.6 \end{aligned}$	$\begin{aligned} & 0.3171 \\ & 1325.4 \end{aligned}$	$\begin{aligned} & 0.3277 \\ & 1341.5 \end{aligned}$	$\begin{aligned} & 0.3568 \\ & 1385.8 \end{aligned}$	$\begin{aligned} & 0.3747 \\ & 1413.3 \end{aligned}$	$\begin{aligned} & 0.4165 \\ & 1477.7 \end{aligned}$	$\begin{aligned} & 0.4556 \\ & 1538.8 \end{aligned}$	$\begin{aligned} & 0.4929 \\ & 1598.2 \end{aligned}$
2000.0	1985.3	635.82	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.2161 \\ & 1184.9 \end{aligned}$	$\begin{aligned} & \hline 0.2489 \\ & 1240.0 \end{aligned}$	$\begin{aligned} & 0.2748 \\ & 1282.6 \end{aligned}$	$\begin{aligned} & 0.2863 \\ & 1301.4 \end{aligned}$	$\begin{aligned} & 0.2972 \\ & 1319.0 \end{aligned}$	$\begin{aligned} & 0.3074 \\ & 1335.5 \end{aligned}$	$\begin{aligned} & 0.3358 \\ & 1381.2 \end{aligned}$	$\begin{aligned} & 0.3532 \\ & 1409.2 \end{aligned}$	$\begin{aligned} & 0.3935 \\ & 1474.5 \end{aligned}$	$\begin{aligned} & 0.4311 \\ & 1536.2 \end{aligned}$	$\begin{aligned} & 0.4668 \\ & 1596.1 \end{aligned}$
2100.0	2085.3	642.77	$\begin{array}{\|l} \hline \nabla \\ \mathrm{h}_{\mathrm{g}} \\ \hline \end{array}$	$\begin{aligned} & 0.1962 \\ & 1167.7 \end{aligned}$	$\begin{aligned} & \hline 0.2306 \\ & 1229.0 \end{aligned}$	$\begin{aligned} & 0.2567 \\ & 1274.3 \end{aligned}$	$\begin{aligned} & 0.2682 \\ & 1294.0 \end{aligned}$	$\begin{aligned} & 0.2789 \\ & 1312.3 \end{aligned}$	$\begin{aligned} & 0.2890 \\ & 1329.5 \end{aligned}$	$\begin{aligned} & 0.3167 \\ & 1376.4 \end{aligned}$	$\begin{aligned} & 0.3337 \\ & 1405.0 \end{aligned}$	$\begin{aligned} & 0.3727 \\ & 1471.4 \end{aligned}$	$\begin{aligned} & 0.4089 \\ & 1533.6 \end{aligned}$	$\begin{aligned} & 0.4433 \\ & 1593.9 \end{aligned}$
2200.0	2185.3	649.46	$\begin{array}{\|l} \hline \nabla \\ h_{g} \end{array}$	$\begin{aligned} & 0.1768 \\ & 1147.8 \end{aligned}$	$\begin{aligned} & 0.2135 \\ & 1217.4 \end{aligned}$	$\begin{aligned} & 0.2400 \\ & 1265.7 \end{aligned}$	$\begin{aligned} & 0.2514 \\ & 1286.3 \end{aligned}$	$\begin{aligned} & 0.2621 \\ & 1305.4 \end{aligned}$	$\begin{aligned} & 0.2721 \\ & 1323.3 \end{aligned}$	$\begin{aligned} & 0.2994 \\ & 1371.5 \end{aligned}$	$\begin{aligned} & 0.3159 \\ & 1400.8 \end{aligned}$	$\begin{aligned} & 0.3538 \\ & 1468.2 \end{aligned}$	$\begin{aligned} & 0.3887 \\ & 1531.1 \end{aligned}$	$\begin{aligned} & 0.4218 \\ & 1591.8 \end{aligned}$
2300.0	2285.3	655.91	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	$\begin{aligned} & 0.1575 \\ & 1123.8 \end{aligned}$	$\begin{aligned} & \hline 0.1978 \\ & 1204.9 \end{aligned}$	$\begin{aligned} & 0.2247 \\ & 1256.7 \end{aligned}$	$\begin{aligned} & 0.2362 \\ & 1278.4 \end{aligned}$	$\begin{aligned} & 0.2468 \\ & 1298.4 \end{aligned}$	$\begin{aligned} & 0.2567 \\ & 1316.9 \end{aligned}$	$\begin{aligned} & 0.2835 \\ & 1366.6 \end{aligned}$	$\begin{aligned} & 0.2997 \\ & 1396.5 \end{aligned}$	$\begin{aligned} & 0.3365 \\ & 1464.9 \end{aligned}$	$\begin{aligned} & 0.3703 \\ & 1528.5 \end{aligned}$	$\begin{aligned} & 0.4023 \\ & 1589.6 \end{aligned}$
2400.0	2385.3	662.12	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	-----	$\begin{aligned} & 0.1828 \\ & 1191.5 \end{aligned}$	$\begin{aligned} & 0.2105 \\ & 1247.3 \end{aligned}$	$\begin{aligned} & 0.2221 \\ & 1270.2 \end{aligned}$	$\begin{aligned} & 0.2327 \\ & 1291.1 \end{aligned}$	$\begin{aligned} & 0.2425 \\ & 1310.3 \end{aligned}$	$\begin{aligned} & 0.2689 \\ & 1361.6 \end{aligned}$	$\begin{aligned} & 0.2848 \\ & 1392.2 \end{aligned}$	$\begin{aligned} & 0.3207 \\ & 1461.7 \end{aligned}$	$\begin{aligned} & 0.3534 \\ & 1525.9 \end{aligned}$	$\begin{aligned} & 0.3843 \\ & 1587.4 \end{aligned}$
2500.0	2485.3	668.13	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	----	$\begin{aligned} & 0.1686 \\ & 1176.8 \end{aligned}$	$\begin{aligned} & 0.1973 \\ & 1207.6 \end{aligned}$	$\begin{aligned} & 0.2090 \\ & 1261.8 \end{aligned}$	$\begin{aligned} & 0.2196 \\ & 1283.6 \end{aligned}$	$\begin{aligned} & 0.2294 \\ & 1303.6 \end{aligned}$	$\begin{aligned} & 0.2555 \\ & 1356.5 \end{aligned}$	$\begin{aligned} & 0.2710 \\ & 1387.8 \end{aligned}$	$\begin{aligned} & 0.3061 \\ & 1458.4 \end{aligned}$	$\begin{aligned} & 0.3379 \\ & 1523.2 \end{aligned}$	$\begin{aligned} & 0.3678 \\ & 1585.3 \end{aligned}$
2600.0	2585.3	673.94	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	----	$\begin{aligned} & \hline 0.1549 \\ & 1160.6 \end{aligned}$	$\begin{aligned} & 0.1849 \\ & 1227.3 \end{aligned}$	$\begin{aligned} & 0.1967 \\ & 1252.9 \end{aligned}$	$\begin{aligned} & 0.2074 \\ & 1275.8 \end{aligned}$	$\begin{aligned} & 0.2172 \\ & 1296.8 \end{aligned}$	$\begin{aligned} & 0.2431 \\ & 1351.4 \end{aligned}$	$\begin{aligned} & 0.2584 \\ & 1383.4 \end{aligned}$	$\begin{aligned} & 0.2926 \\ & 1455.1 \end{aligned}$	$\begin{aligned} & 0.3236 \\ & 1520.6 \end{aligned}$	$\begin{aligned} & 0.3526 \\ & 1583.1 \end{aligned}$
2700.0	2685.3	679.55	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	----	$\begin{aligned} & 0.1415 \\ & 1142.5 \end{aligned}$	$\begin{aligned} & 0.1732 \\ & 1216.5 \end{aligned}$	$\begin{aligned} & 0.1853 \\ & 1243.8 \end{aligned}$	$\begin{aligned} & 0.1960 \\ & 1267.9 \end{aligned}$	$\begin{aligned} & 0.2059 \\ & 1289.7 \end{aligned}$	$\begin{aligned} & 0.2315 \\ & 1346.1 \end{aligned}$	$\begin{aligned} & 0.2466 \\ & 1378.9 \end{aligned}$	$\begin{aligned} & 0.2801 \\ & 1451.8 \end{aligned}$	$\begin{aligned} & 0.3103 \\ & 1518.0 \end{aligned}$	$\begin{aligned} & 0.3385 \\ & 1580.9 \end{aligned}$
2800.0	2785.3	684.99	$\begin{array}{\|l\|} \hline \nabla \\ h_{g} \\ \hline \end{array}$	-----	$\begin{aligned} & 0.1281 \\ & 1121.4 \end{aligned}$	$\begin{aligned} & 0.1622 \\ & 1205.1 \end{aligned}$	$\begin{aligned} & 0.1745 \\ & 1234.2 \end{aligned}$	$\begin{aligned} & 0.1854 \\ & 1259.6 \end{aligned}$	$\begin{aligned} & 0.1953 \\ & 1282.4 \end{aligned}$	$\begin{aligned} & 0.2208 \\ & 1340.8 \end{aligned}$	$\begin{aligned} & 0.2356 \\ & 1374.3 \end{aligned}$	$\begin{aligned} & 0.2685 \\ & 1448.5 \end{aligned}$	$\begin{aligned} & 0.2979 \\ & 1515.4 \end{aligned}$	$\begin{aligned} & 0.3254 \\ & 1578.7 \end{aligned}$
2900.0	2885.3	690.26	$\begin{array}{\|l} \nabla \\ h_{g} \end{array}$	-	$\begin{aligned} & 0.1143 \\ & 1095.9 \end{aligned}$	$\begin{aligned} & 0.1517 \\ & 1193.0 \end{aligned}$	$\begin{aligned} & 0.1644 \\ & 1224.3 \end{aligned}$	$\begin{aligned} & 0.1754 \\ & 1251.1 \end{aligned}$	$\begin{aligned} & 0.1853 \\ & 1274.9 \end{aligned}$	$\begin{aligned} & 0.2108 \\ & 1335.3 \end{aligned}$	$\begin{aligned} & 0.2254 \\ & 1369.7 \end{aligned}$	$\begin{aligned} & 0.2577 \\ & 1445.1 \end{aligned}$	$\begin{aligned} & 0.2864 \\ & 1512.7 \end{aligned}$	$\begin{aligned} & 0.3132 \\ & 1576.5 \end{aligned}$
3000.0	2985.3	695.36	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	-----	$\begin{aligned} & 0.0984 \\ & 1060.7 \end{aligned}$	$\begin{aligned} & 0.1416 \\ & 1180.1 \end{aligned}$	$\begin{aligned} & 0.1548 \\ & 1213.8 \end{aligned}$	$\begin{aligned} & 0.1660 \\ & 1242.2 \end{aligned}$	$\begin{aligned} & 0.1760 \\ & 1267.2 \end{aligned}$	$\begin{aligned} & 0.2014 \\ & 13297 \end{aligned}$	$\begin{aligned} & 0.2159 \\ & 1365.0 \end{aligned}$	$\begin{aligned} & 0.2476 \\ & 1441.8 \end{aligned}$	$\begin{aligned} & 0.2757 \\ & 1510.0 \end{aligned}$	$\begin{aligned} & 0.3018 \\ & 1574.3 \end{aligned}$
3100.0	3085.3	700.31	$\begin{array}{\|l} \hline \begin{array}{l} \\ h_{g} \\ \hline \end{array} \\ \hline \end{array}$	---		$\begin{aligned} & 0.1320 \\ & 1166.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1456 \\ & 1202.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1571 \\ & 1233.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1672 \\ & 1259.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1926 \\ & 1324.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2070 \\ & 1360.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2382 \\ & 1438.4 \end{aligned}$	$\begin{aligned} & 0.2657 \\ & 1507.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2911 \\ & 1572.1 \end{aligned}$
3200.0	3185.3	705.11	$\begin{array}{\|l} \hline \nabla \\ \mathrm{h}_{\mathrm{g}} \end{array}$		---	$\begin{aligned} & 0.1226 \\ & 1151.1 \end{aligned}$	$\begin{aligned} & 0.1369 \\ & 1191.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1486 \\ & 1223.5 \end{aligned}$	$\begin{aligned} & 0.1589 \\ & 1251.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1843 \\ & 1318.3 \end{aligned}$	$\begin{aligned} & 0.1986 \\ & 1355.5 \end{aligned}$	$\begin{aligned} & 0.2293 \\ & 1434.9 \end{aligned}$	$\begin{aligned} & 0.2563 \\ & 1504.7 \end{aligned}$	$\begin{aligned} & 0.2811 \\ & 1569.9 \end{aligned}$
3206.2	3191.5	705.40	$\begin{array}{\|l} \hline \nabla \\ h_{g} \\ \hline \end{array}$	----	---	$\begin{aligned} & 0.1220 \\ & 1150.2 \end{aligned}$	$\begin{aligned} & 0.1363 \\ & 1190.6 \end{aligned}$	$\begin{aligned} & 0.1480 \\ & 1222.9 \end{aligned}$	$\begin{aligned} & 0.1583 \\ & 1250.5 \end{aligned}$	$\begin{aligned} & 0.1838 \\ & 1317.9 \end{aligned}$	$\begin{aligned} & 0.1981 \\ & 1355.2 \end{aligned}$	$\begin{aligned} & 0.2288 \\ & 1434.7 \end{aligned}$	$\begin{aligned} & 0.2557 \\ & 1504.5 \end{aligned}$	$\begin{aligned} & 0.2806 \\ & 1569.8 \end{aligned}$
$\begin{aligned} & \nabla=\text { specific volume, cubic feet per pound } \\ & h_{g}=\text { total heat of steam, BTU per pound } \end{aligned}$														

Conversions, Equivalents, and Physical Data

Determine Velocity of Steam in Pipes:

$$
\operatorname{Velocity}(\mathrm{ft} / \mathrm{s})=\frac{(25)(\mathrm{A})}{(\mathrm{V})}
$$

Where: $\begin{aligned} & \text { A }=\text { Nominal pipe section area }=\frac{\pi(d)^{2}}{4} \\ & d=\text { Diameter }\end{aligned}$
d = Diameter
$\mathrm{V}=$ Specific volume from steam tables in $\mathrm{ft}^{3} / \mathrm{lb}\left(\mathrm{m}^{3} / \mathrm{kg}\right)$
Note: Specific volume changes with steam pressure and temperature. Make sure to calculate velocities of inlet and outlet piping of the regulator.

Typical Condensation Rates In Insulated Steam Pipes						
PRESSURE, PSIG (bar)	RATES IN POUNDS/HOUR (KG/HOUR) PER FOOT OF PIPE WITH 2-INCHES OF INSULATION					
	Pipe Diameter in Inches					
	3/4	1	1-1/2	2	3	4
$1(0,069)$	$0.02(0,009)$	$0.03(0,014)$	$0.03(0,014)$	$0.04(0,018)$	$0.05(0,023)$	$0.06(0,027)$
$5(0,34)$	$0.03(0,014)$	$0.03(0,014)$	$0.04(0,018)$	$0.04(0,018)$	$0.05(0,023)$	$0.06(0,027)$
$10(0,69)$	$0.03(0,014)$	$0.03(0,014)$	$0.04(0,018)$	$0.04(0,018)$	$0.05(0,023)$	$0.07(0,032)$
$25(1,7)$	$0.03(0,014)$	$0.04(0,018)$	$0.05(0,023)$	$0.05(0,023)$	$0.06(0,027)$	$0.08(0,036)$
$50(3,4)$	$0.04(0,018)$	$0.04(0,018)$	$0.05(0,023)$	$0.06(0,027)$	$0.09(0,041)$	$0.11(0,05)$
$75(5,2)$	$0.04(0,018)$	$0.05(0,023)$	$0.06(0,027)$	$0.07(0,032)$	$0.11(0,05)$	$0.14(0,064)$
$100(6,9)$	$0.05(0,023)$	$0.05(0,023)$	$0.07(0,032)$	$0.08(0,036)$	$0.12(0,054)$	$0.15(0,068)$
$125(8,6)$	$0.05(0,023)$	0.06 (0,027)	$0.07(0,032)$	$0.08(0,036)$	$0.13(0,059)$	$0.16(0,073)$
$150(10,3)$	$0.06(0,027)$	$0.06(0,027)$	$0.08(0,036)$	$0.09(0,041)$	$0.14(0,064)$	$0.17(0,077)$
200 (13,8)	0.06 (0,027)	$0.07(0,032)$	$0.08(0,036)$	$0.09(0,041)$	$0.15(0,068)$	$0.19(0,086)$

Typical Condensation Rates In Steam Pipes Without Insulation						
PRESSURE, PSIG (bar)	RATES IN POUNDS/HOUR (KG/HOUR) PER FOOT OF BARE PIPE AT $72{ }^{\circ} \mathrm{F}$ ($22^{\circ} \mathrm{C}$) AMBIENT AIR					
	Pipe Diameter in Inches					
	3/4	1	1-1/2	2	3	4
$1(0,069)$	$0.11(0,05)$	0.15 (0,068)	$0.21(0,095)$	0.25 (0,113)	$0.38(0,172)$	0.46 (0,209)
$5(0,34)$	$0.14(0,064)$	0.16 (0,073)	$0.22(0,1)$	0.26 (0,118)	$0.41(0,186)$	$0.50(0,227)$
$10(0,69)$	$0.15(0,068)$	$0.18(0,082)$	$0.24(0,109)$	$0.29(0,132)$	$0.44(0,2)$	$0.53(0,24)$
$25(1,7)$	$0.17(0,077)$	$0.22(0,1)$	$0.31(0,141)$	$0.36(0,163)$	$0.53(0,24)$	$0.65(0,295)$
$50(3,4)$	$0.22(0,1)$	0.27 (0,122)	$0.39(0,177)$	0.46 (0,209)	0.66 (0,299)	$0.83(0,376)$
$75(5,2)$	0.26 (0,118)	$0.31(0,141)$	0.45 (0,204)	$0.54(0,245)$	0.77 (0,349)	$1.04(0,472)$
$100(6,9)$	$0.29(0,132)$	$0.35(0,159)$	$0.50(0,227)$	$0.61(0,277)$	0.86 (0,39)	$1.11(0,503)$
$125(8,6)$	$0.32(0,145)$	$0.39(0,177)$	$0.55(0,249)$	$0.68(0,308)$	$0.94(0,426)$	1.23 (0,558)
150 (10,3)	$0.35(0,159)$	0.42 (0,191)	0.60 (0,272)	$0.74(0,336)$	$1.03(0,467)$	$1.33(0,603)$
$200(13,8)$	0.40 (0,181)	$0.49(0,222)$	$0.69(0,313)$	$0.81(0,367)$	$1.19(0,54)$	1.50 (0,68)

Conversions, Equivalents, and Physical Data

- continued -

Technical

Conversions, Equivalents, and Physical Data

Flow of Water Through Schedule 40 Steel Pipes (continued)																			
DISCHARGE		PRESSURE DROP PER 100 FEET AND VELOCITY IN SCHEDULE 40 PIPE FOR WATER AT $60{ }^{\circ} \mathrm{F}$																	
Gallons per Minute	Cubic Ft. per Second	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)	Velocity (Ft. per Second)	Pressure Drop (PSI)		
		10-Inch		12-Inch		14-Inch						5-Inch		6-Inch		8-Inch			
700	1.560	2.85	0.112	2.01	0.047				----	----	----	11.23	3.43	7.78	1.35	4.49	0.343		
750	1.671	3.05	0.127	2.15	0.054							12.03	3.92	8.33	1.55	4.81	0.392		
800	1.782	3.25	0.143	2.29	0.061					----	----	12.83	4.43	8.88	1.75	5.13	0.443		
850	1.894	3.46	0.160	2.44	0.068	2.02	0.042			----	----	13.64	5.00	9.44	1.96	5.45	0.497		
900	2.005	3.66	0.179	2.58	0.075	2.13	0.047			----	----	14.44	5.58	9.99	2.18	5.77	0.554		
950	2.117	3.86	0.198	2.72	0.083	2.25	0.052	----	----	----	----	15.24	6.21	10.55	2.42	6.09	0.613		
1000	2.228	4.07	0.218	2.87	0.091	2.37	0.057	16-Inch				16.04	6.84	11.10	2.68	6.41	0.675		
1100	2.451	4.48	0.260	3.15	0.110	2.61	0.068					17.65	8.23	12.22	3.22	7.05	0.807		
1200	2.674	4.88	0.306	3.44	0.128	2.85	0.800	2.18	0.042			-- - -	-- - -	13.33	3.81	7.70	0.948		
1300	2.896	5.29	0.355	3.73	0.150	3.08	0.093	2.36	0.048			----	----	14.43	4.45	8.33	1.11		
1400	3.119	5.70	0.409	4.01	0.171	3.32	0.107	2.54	0.055			----		15.55	5.13	8.98	1.28		
1500	3.342	6.10	0.466	4.30	0.195	3.56	0.122	2.72	0.063	18-Inch		20-Inch		16.66	5.85	9.62	1.46		
1600	3.565	6.51	0.527	4.59	0.219	3.79	0.138	2.90	0.071			17.77	6.61	10.26	1.65				
1800	4.010	7.32	0.663	5.16	0.276	4.27	0.172	3.27	0.088	2.58	0.050			19.99	8.37	11.54	2.08		
2000	4.456	8.14	0.808	5.73	0.339	4.74	0.209	3.63	0.107	2.87	0.060			22.21	10.3	12.82	2.55		
2500	5.570	10.17	1.24	7.17	0.515	5.93	0.321	4.54	0.163	3.59	0.091					16.03	3.94		
3000	6.684	12.20	1.76	8.60	0.731	7.11	0.451	5.45	0.232	4.30	0.129			3.460 .075		24-Inch		19.24	5.59
3500	7.798	14.24	2.38	10.03	0.982	8.30	0.607	6.35	0.312	5.02	0.173	4.04	0.101	22.44	7.56				
4000	8.912	16.27	3.08	11.47	1.27	9.48	0.787	7.26	0.401	5.74	0.222	4.62	0.129	3.19	0.052	25.65	9.80		
4500	10.03	18.31	3.87	12.90	1.60	10.67	0.990	8.17	0.503	6.46	0.280	5.20	0.162	3.59	0.065	28.87	12.2		
5000	11.14	20.35	7.71	14.33	1.95	11.85	1.21	9.08	0.617	7.17	0.340	5.77	0.199	3.99	0.079	-- - -			
6000	13.37	24.41	6.74	17.20	2.77	14.23	1.71	10.89	0.877	8.61	0.483	6.93	0.280	4.79	0.111	----	----		
7000	15.60	28.49	9.11	20.07	3.74	16.60	2.31	12.71	1.18	10.04	0.652	8.08	0.376	5.59	0.150	----			
8000	17.82			22.93	4.84	18.96	2.99	14.52	1.51	11.47	0.839	9.23	0.488	6.38	0.192	----			
9000	20.05			25.79	6.09	21.34	3.76	16.34	1.90	12.91	1.05	10.39	0.608	7.18	0.242	----	----		
10,000	22.28	----		28.66	7.46	23.71	4.61	18.15	2.34	14.34	1.28	11.54	0.739	7.98	0.294	----			
12,000	26.74	----	----	34.40	10.7	28.45	6.59	21.79	3.33	17.21	1.83	13.85	1.06	9.58	0.416	----	----		
14,000	31.19	----	----	--- -	--- -	33.19	8.89	25.42	4.49	20.08	2.45	16.16	1.43	11.17	0.562	----	----		
16,000	35.65	----	----	----	----	----	----	29.05	5.83	22.95	3.18	18.47	1.85	12.77	0.723	----	----		
18,000	40.10			----	----		----	32.68	7.31	25.82	4.03	20.77	2.32	14.36	0.907	----			
20,000	44.56	----	----	----				36.31	9.03	28.69	4.93	23.08	2.86	15.96	1.12	----			
For pipe lengths other than 100 feet, the pressure drop is proportional to the length. Thus, for 50 feet of pipe, the pressure drop is approximately one half the value given in the table or 300 feet, three times the given value, etc. Velocity is a function of the cross sectional flow area; thus, it is constant for a given flow rate and is independent of pipe length. Extracted from Technical Paper No. 410, Flow of Fluids, with permission of Crane Co.																			

TECHNICAL

Conversions, Equivalents, and Physical Data

Flow of Air Through Schedule 40 Steel Pipes (continued)										
$\begin{aligned} & \text { FREE AIR } \\ & \mathbf{Q}^{\prime M} \end{aligned}$	COMPRESSED AIR	PRESSURE DROP OF AIR IN POUNDS PER SQUARE INCH PER 100 FEET OF SCHEDULE 40 PIPE FOR AIR AT 100 POUNDS PER SQUARE INCH GAUGE PRESSURE AND $60^{\circ} \mathrm{F}$ TEMPERATURE								
Cubic Feet per Minute at $60^{\circ} \mathrm{F}$ and 14.7 psia	Cubic Feet per Minute at $60^{\circ} \mathrm{F}$ and 100 psig	2-1/2-Inch	3-Inch	3-1/2-Inch	4-Inch	5-Inch	6-Inch	8-Inch	10-Inch	12-Inch
1,400	179.4	4.65	1.52	0.718	0.377	0.119	0.047			11.8
1,500	192.2	5.31	1.74	0.824	0.431	0.136	0.054			13.5
1,600	205.1	6.04	1.97	0.932	0.490	0.154	0.061			15.3
1,800	230.7	7.65	2.50	1.18	0.616	0.193	0.075			19.3
2,000	256.3	9.44	3.06	1.45	0.757	0.237	0.094	0.023		23.9
2,500	320.4	14.7	4.76	2.25	1.17	0.366	0.143	0.035		37.3
3,000	384.5	21.1	6.82	3.20	1.67	0.524	0.204	0.051	0.016	
3,500	448.6	28.8	9.23	4.33	2.26	0.709	0.276	0.068	0.022	
4,000	512.6	37.6	12.1	5.66	2.94	0.919	0.358	0.088	0.028	12-Inch
4,500	576.7	47.6	15.3	7.16	3.69	1.16	0.450	0.111	0.035	
5,000	640.8	---	18.8	8.85	4.56	1.42	0.552	0.136	0.043	0.018
6,000	769.0	----	27.1	12.7	6.57	2.03	0.794	0.195	0.061	0.025
7,000	897.1	---	36.9	17.2	8.94	2.76	1.07	0.262	0.082	0.034
8,000	1025	--- -	-- -	22.5	11.7	3.59	1.39	0.339	0.107	0.044
9,000	1153	-	---	28.5	14.9	4.54	1.76	0.427	0.134	0.055
10,000	1282	----	----	35.2	18.4	5.60	2.16	0.526	0.164	0.067
11,000	1410	-	----	--	22.2	6.78	2.62	0.633	0.197	0.081
12,000	1538	----	----	--- -	26.4	8.07	3.09	0.753	0.234	0.096
13,000	1666	---	-	--- -	31.0	9.47	3.63	0.884	0.273	0.112
14,000	1794	-	-	----	36.0	11.0	4.21	1.02	0.316	0.129
15,000	1922	----	----	---	----	12.6	4.84	1.17	0.364	0.148
16,000	2051	----	----	----	----	14.3	5.50	1.33	0.411	0.167
18,000	2307	----	----	----	----	18.2	6.96	1.68	0.520	0.213
20,000	2563	----	----	--	----	22.4	8.60	2.01	0.642	0.260
22,000	2820	-	----	----	----	27.1	10.4	2.50	0.771	0.314
24,000	3076	----	----	----	--	32.3	12.4	2.97	0.918	0.371
26,000	3332	----	----	----	----	37.9	14.5	3.49	1.12	0.435
28,000	3588	--	----	--	--	--	16.9	4.04	1.25	0.505
30,000	3845	----	----	----	----	----	19.3	4.64	1.42	0.520
Extracted from T	Technical Paper N	410, Flow of	with per	of Crane C						

TECHNICAL

Conversions, Equivalents, and Physical Data

Average Properties of Propane	
Formula	$\mathrm{C}_{3} \mathrm{H}_{8}$
Boiling Point, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$-44(-42)$
Specific Gravity of Gas (Air $=1.00)$	1.53
Pounds per Gallon of Liquid at $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$	4.24
BTU per Gallon of Gas at $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$	91,547
BTU per Pound of Gas	21,591
BTU per Cubic Foot of Gas at $60^{\circ} \mathrm{F}\left(16^{\circ}\right)$	2516
Cubic Feet of Vapor at $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ per Gallon of Liquid at $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$	36.39
Cubic Feet of Vapor at $60^{\circ} \mathrm{F}\left(16^{\circ} \mathrm{C}\right)$ per Pound of Liquid at $60^{\circ} \mathrm{F}\left(16^{\circ}\right)$	8.547
Latent Heat of Vaporization at Boiling Point, BTU per Gallon	785.0
Combustion Data	
Cubic Feet of Air Required to Burn 1 Cubic Foot of Gas	23.86
Flash Point, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	$-156(-104)$
Ignition Temperature in Air, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	
Maximum Flame Temperature in Air, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	920 to 1020
Limits of Inflammability, Percentage of Gas in Air Mixture	$393545(1979)$
at Lower Limit	2.4%
at Upper Limit	9.6%
Octane Number (ISO Octane $=100)$	

Standard Domestic Propane Tank Specifications			
CAPACITY	DIAMETER	LENGTH	TANK WEIGHT
Gallons (Liters)	Inches (mm)	Inches (mm)	Pounds (kg)
$120(454)$	$24(610)$	$68(1727)$	$288(131)$
$150(568)$	$24(610)$	$84(2134)$	$352(160)$
$200(757)$	$30(762)$	$79(2007)$	$463(210)$
$250(946)$	$30(762)$	$94(2387)$	$542(246)$
$325(1230)$	$30(762)$	$119(3023)$	$672(305)$
$500(1893)$	$37(940)$	$119(3023)$	$1062(482)$
$1000(3785)$	$41(1041)$	$192(4877)$	$1983(900)$

Approximate Vaporization Capacities of Propane Tanks		
BTU PER HOUR WITH 40\% LIQUID IN DOMESTIC TANK SYSTEMS		
Tank Size Water Capacity	Prevailing Air Temperature	
	$\mathbf{2 0}^{\circ} \mathbf{F}\left(\mathbf{- 7}^{\circ} \mathbf{C}\right)$	$\mathbf{6 0 ^ { \circ }} \mathbf{F}\left(\mathbf{1 6} \mathbf{}^{\circ}\right)$
120	235,008	417,792
150	290,304	516,096
200	341,280	606,720
250	406,080	721,920
325	514,100	937,900
500	634,032	$1,127,168$
1000	$1,088,472$	$1,978,051$

Orifice Capacities for Propane			
ORIFICE OR DRILL SIZE	ORIFICE CAPACITY BTU PER HOUR, 11-INCHES W.C.	ORIFICE OR DRILL SIZE	ORIFICE CAPACITY BTU PER HOUR, 11-INCHES W.C
0.008	519	51	36531
0.009	656	50	39842
0.010	812	49	43361
0.011	981	48	46983
0.012	1169	47	50088
80	1480	46	53296
79	1708	45	54641
78	2080	44	60229
77	2629	43	64369
76	3249	42	71095
75	3581	41	74924
74	4119	40	78029
73	4678	39	80513
72	5081	38	83721
71	5495	37	87860
70	6375	36	92207
69	6934	35	98312
68	7813	34	100175
67	8320	33	103797
66	8848	32	109385
65	9955	31	117043
64	10535	30	134119
63	11125	29	150366
62	11735	28	160301
61	12367	27	168580
60	13008	26	175617
59	13660	25	181619
58	14333	24	187828
57	15026	23	192796
56	17572	22	200350
55	21939	21	205525
54	24630	20	210699
53	28769	19	223945
52	32805	18	233466
BTU per cubic foot $=2516$ Specific Gravity $=1.52$ Pressure at orifice, inches of water column $=11$ Orifice Coefficient $=0.9$			

TECHNICAL

Conversions, Equivalents, and Physical Data

Pipe and Tubing Sizing												
PROPANE PIPE AND TUBING SIZING BETWEEN SINGLE OR SECOND STAGE LOW PRESSURE REGULATORS AND APPLIANCES												
Pipe or Tubing Length, Feet	Copper Tubing Size, Outside Diameter (Inside Diameter), Type L					Pipe or Tubing Length, Feet	Nominal Pipe Size, Outside Diameter (Inside Diameter), Schedule 40					
	3/8 (0.315)	1/2 (0.430)	5.8 (0.545)	3/4 (0.666)	7/8 (0.785)		1/2 (0.622)	3.4 (0.824)	1 (1.049)	1-1/4 (1.380)	1-1/2 (1.610)	2 (2.067)
10	49	110	206	348	536	10	291	608	1146	2353	3525	6789
20	34	76	151	239	368	20	200	418	788	1617	2423	4666
30	27	61	114	192	296	30	161	336	632	1299	1946	3747
40	23	52	97	164	253	40	137	282	541	1111	1665	3207
50	20	46	86	146	224	50	122	557	480	985	1476	2842
60	19	42	78	132	203	60	110	231	435	892	1337	2575
70	17	39	72	121	187	80	94	198	372	764	1144	2204
80	16	36	67	113	174	100	84	175	330	677	1014	1954
90	15	34	63	106	163	125	74	155	292	600	899	1731
100	14	32	59	100	154	150	67	141	265	544	815	1569
150	11	26	48	80								
To convert to capacities in cubic feet per hour, divide by 2.5 Note: Maximum undiluted propane capacities listed are based on 11 -inches w.c. setting and a 0.5 -inch w.c. pressure drop - Capacities in 1,000 BTU per hour.												

Vapor Pressures of Propane							
TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE	TEMPERATURE	PRESSURE
${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Psig (Bar)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Psig (Bar)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Psig (Bar)	${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	Psig (Bar)
130 (54)	257 (18)	70 (21)	109 (8)	20 (-7)	$40(2,8)$	-20 (-29)	$10(0,69)$
120 (49)	225 (16)	65 (18)	100 (6,9)	10 (-12)	31 (2)	-25 (-32)	$8(0,55)$
110 (43)	197 (14)	60 (16)	92 (6)	0 (-17)	23 (2)	-30 (-34)	$5(0,34)$
100 (38)	172 (12)	50 (10)	77 (5)	-5 (-21)	$20(1,4)$	-35 (-37)	$3(0,21)$
90 (32)	149 (10)	40 (4)	63 (4)	-10 (-23)	16 (1)	-40 (-40)	$1(0,069)$
80 (27)	128 (9)	30 (-1)	51 (4)	-15 (-26)	13 (1)	-44 (-42)	0 (0)

Converting Volumes of Gas		
CFH TO CFH OR CFM TO CFM		
Multiply Flow of	By	To Obtain Flow of
Air	0.707	Butane
	1.290	Natural Gas
	0.808	Propane
Butane	1.414	Air
	1.826	Natural Gas
	1.140	Propane
Natural Gas	0.775	Air
	0.547	Butane
	0.625	Propane
Propane	1.237	Air
	0.874	Butane
	1.598	Natural Gas

BTU Comparisons		
COMMON FUELS	PER GALLON	PER POUND
Propane	91,547	21,591
Butane	102,032	21,221
Gasoline	110,250	20,930
Fuel Oil	134,425	16,960

Conversions, Equivalents, and Physical Data

Capacities of Spuds and Orifices																					
DRILL DESIGNATION	DIAMETER, INCHES	AREA, SQUARE INCHES	CAPACITIES IN CFH OF 0.6 GRAVITY HIGH PRESSURE NATURAL GAS AND AN ORIFICE COEFFICIENT OF 1.0																		
			Upstream Pressure, Psi Gauge																		
			1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	25	30	40	50
80	0.0135	0.000143	1.61	2.26	2.76	3.17	3.52	3.84	4.13	4.40	4.65	4.88	5.31	5.65	6.05	6.44	6.84	7.82	8.80	10.8	12.8
79	0.0145	0.000163	1.85	2.61	3.18	3.65	4.06	4.43	4.77	5.07	5.36	5.63	6.12	6.52	6.98	7.43	7.89	9.02	10.2	12.5	14.7
1/64"	0.0156	0.000191	2.14	3.02	3.68	4.23	4.70	5.13	5.52	5.87	6.20	6.51	7.09	7.55	8.08	8.61	9.13	10.5	11.8	14.4	17.1
78	0.0160	0.000201	2.26	3.18	3.88	4.45	4.94	5.40	5.81	6.18	6.53	6.85	7.46	7.95	8.50	9.05	9.61	11.0	12.4	15.2	17.9
77	0.0180	0.000234	2.85	4.02	4.90	5.62	6.25	6.82	7.34	7.81	8.25	8.66	9.42	10.1	10.8	11.5	12.2	13.9	15.7	19.2	22.7
76	0.0200	0.000314	3.53	4.97	6.05	6.95	7.72	8.43	9.07	9.65	10.2	10.8	11.7	12.5	13.3	14.2	15.0	17.2	19.4	23.7	28.0
75	0.0210	0.000346	3.89	5.48	6.67	7.65	8.51	9.29	10.0	10.7	12.3	11.8	12.9	13.7	14.7	15.6	16.6	19.0	21.3	26.1	30.9
74	0.0225	0.000398	4.47	7.08	7.67	8.80	9.78	10.7	11.5	12.4	13.0	13.6	14.8	15.8	16.9	18.0	19.1	21.8	24.5	30.0	35.5
73	0.0240	0.000452	5.08	7.16	8.71	10.0	11.2	12.2	13.1	13.9	14.7	15.4	16.8	17.9	19.1	20.4	21.6	24.7	27.6	34.1	40.3
72	0.0250	0.000491	5.52	7.78	9.46	10.9	12.1	13.2	14.2	15.1	16.0	16.8	18.3	19.4	20.8	22.1	23.5	26.9	30.3	37.0	43.8
71	0.0260	0.000531	5.97	8.41	10.3	11.8	13.1	14.3	15.4	16.4	17.3	18.1	19.7	21.0	22.5	23.9	25.4	29.1	32.7	40.0	47.3
70	0.0280	0.000616	6.92	9.75	11.9	13.7	15.2	16.6	17.8	19.0	20.0	21.0	22.9	24.4	26.1	27.8	29.5	33.8	38.0	46.4	54.9
69	0.0292	0.000670	7.53	10.6	13.0	14.9	16.5	18.0	19.4	20.0	21.8	22.9	24.9	26.5	28.4	30.2	32.1	36.7	41.3	50.5	59.7
68	0.0310	0.000735	8.48	12.0	14.6	16.7	18.6	20.3	21.9	23.2	24.5	25.8	28.0	29.9	32.0	34.0	36.1	41.3	46.5	56.9	67.3
1/32"	0.0313	0.000765	8.59	12.2	14.8	17.0	18.8	20.6	22.1	23.5	24.9	26.1	28.4	30.3	32.4	34.5	36.6	41.9	47.1	57.7	68.2
67	0.0320	0.000804	9.03	12.8	15.5	17.8	19.8	21.6	23.3	24.7	26.1	27.4	29.9	31.8	34.0	36.2	38.5	44.0	49.5	60.6	71.7
66	0.0330	0.000855	9.60	13.6	16.5	18.9	21.1	23.0	24.7	26.3	27.6	29.2	31.8	33.8	36.2	38.5	40.9	46.8	52.7	64.4	76.2
65	0.0350	0.000962	10.8	15.3	18.6	21.3	23.7	25.9	27.8	29.6	31.3	32.8	35.7	38.1	40.7	43.4	46.0	52.6	59.2	72.5	85.7
64	0.0360	0.001018	11.5	16.2	19.7	22.6	25.1	27.4	29.4	31.3	33.1	34.7	37.8	40.3	42.4	45.9	48.7	55.7	62.7	76.7	90.7
63	0.0370	0.001075	12.1	17.1	20.8	23.8	26.5	28.9	31.1	33.1	34.9	36.7	39.9	42.5	45.5	48.4	51.4	58.8	66.2	81.0	95.8
62	0.0380	0.001134	12.8	18.0	21.9	25.1	27.9	30.5	32.8	34.9	36.8	38.7	42.1	44.8	48.0	51.1	54.2	62.0	69.8	85.4	101
61	0.0390	0.001195	13.5	19.0	23.1	26.5	29.4	32.1	34.6	36.8	38.8	40.8	44.4	47.3	50.6	53.8	57.1	65.4	73.6	90.0	107
60	0.0400	0.001257	14.2	19.9	24.3	27.8	30.9	33.8	36.4	38.7	40.8	42.9	46.7	49.7	53.2	56.6	60.1	68.7	77.4	94.7	112
59	0.0410	0.001320	14.9	20.9	25.5	29.2	32.5	35.5	38.2	40.6	42.9	45.0	49.0	52.2	55.8	59.5	63.1	72.2	81.3	99.5	118
58	0.0420	0.001385	15.6	22.0	26.7	30.7	34.1	37.2	40.0	42.6	45.0	41.2	51.4	54.8	58.6	62.4	66.2	75.7	85.3	105	124
57	0.0430	0.001452	16.3	23.0	28.0	32.1	35.7	39.0	42.0	44.7	47.2	49.5	53.9	57.4	61.4	65.4	69.4	79.4	89.4	110	130
56	0.0465	0.001698	19.1	26.9	32.8	37.6	41.8	45.6	49.1	52.2	55.1	57.9	63.0	67.1	71.8	76.5	81.2	92.8	105	128	152
3/64"	0.0469	0.00173	19.5	27.4	33.4	38.3	42.6	46.5	50.0	53.2	56.2	59.0	64.2	68.4	73.2	77.9	82.7	94.6	107	131	155
55	0.0520	0.00212	23.8	33.6	40.9	46.9	52.1	57.0	61.3	65.2	68.8	72.3	78.7	83.8	89.6	95.5	102	116	131	160	189
54	0.0550	0.00238	26.8	37.7	45.9	52.7	58.5	63.9	68.8	73.2	77.3	81.1	88.3	94.1	101	108	114	132	147	180	212
53	0.0595	0.00278	31.1	44.0	53.6	61.5	68.4	74.7	80.3	85.4	90.3	94.7	104	110	118	126	133	152	172	210	248
1/16"	0.0625	0.00307	34.5	48.6	59.2	67.9	75.5	82.5	88.8	94.4	99.7	105	114	122	130	139	147	168	189	232	274
52	0.0635	0.00317	35.6	50.2	61.1	70.1	78.0	85.1	91.6	97.4	103	108	118	126	134	143	152	174	196	239	283
51	0.0670	0.00353	39.7	55.9	68.0	78.1	86.8	94.8	102	109	115	121	131	140	150	159	169	193	218	266	315
50	0.0700	0.00385	43.3	61.0	74.2	85.2	94.7	104	112	119	125	132	143	153	163	174	184	211	237	290	343
49	0.0730	0.00419	47.1	66.4	80.8	92.7	103	113	121	129	136	143	156	166	178	189	201	229	258	316	374
48	0.0760	0.00454	51.0	71.9	87.5	101	112	122	132	140	148	155	169	180	192	205	217	249	280	342	405
5/64"	0.0781	0.00479	53.8	75.9	92.3	106	118	129	134	148	156	164	178	190	203	216	229	262	295	361	427
47	0.0785	0.00484	54.4	76.6	93.3	107	119	130	140	149	158	165	180	192	205	218	232	265	298	365	432
46	0.0810	0.00515	57.9	81.6	99.2	114	127	139	149	159	168	176	191	204	218	232	246	282	317	388	459
45	0.0820	0.00528	59.3	83.6	102	117	130	141	153	163	172	180	196	209	224	238	253	289	325	398	471
44	0.0860	0.00582	65.3	92.1	113	129	143	157	169	179	189	199	216	230	246	262	278	319	359	439	519
43	0.0890	0.00622	69.9	98.5	120	138	153	167	180	192	202	212	231	246	263	280	298	340	383	469	555
42	0.0935	0.00687	77.2	109	133	152	169	185	199	212	223	234	255	272	291	310	329	376	423	518	612
3/32"	0.0937	0.00690	77.5	110	133	153	170	186	200	212	224	235	256	273	292	311	350	378	425	520	615
41	0.0960	0.00724	81.3	115	140	161	178	195	210	223	235	247	269	287	306	326	346	396	446	546	645
40	0.0980	0.00754	84.7	120	146	167	186	203	218	232	245	257	280	298	319	340	361	413	464	568	672
39	0.0995	0.00778	87.4	124	150	172	192	209	225	239	253	265	289	308	329	351	372	426	479	585	693
38	0.1015	0.00809	90.9	128	156	179	199	218	234	249	263	276	300	320	342	365	387	443	498	610	721
37	0.1040	0.00849	95.4	135	164	188	209	228	246	261	276	290	315	336	359	383	406	464	523	640	757

- continued -

TECHNICAL

Conversions, Equivalents, and Physical Data

Capacities of Spuds and Orifices (continued)																					
DRILL DESIGNATION	DIAMETER, INCHES	AREA, SQUARE INCHES	CAPACITIES IN CFH OF 0.6 GRAVITY HIGH PRESSURE NATURAL GAS AND AN ORIFICE COEFFICIENT OF 1.0																		
			Upstream Pressure, Psi Gauge																		
			1	2	3	4	5	6	7	8	9	10	12	14	16	18	20	25	30	40	50
36	0.1065	0.00891	100	141	172	197	219	240	258	274	290	304	331	352	377	402	426	487	549	671	794
7/64"	0.1094	0.00940	106	149	182	208	231	253	272	289	305	321	349	372	398	424	449	514	579	708	838
35	0.1100	0.00950	107	151	183	210	234	255	275	292	309	324	353	376	402	428	454	520	585	716	847
34	0.1110	0.00968	109	154	187	214	238	260	280	298	315	330	359	383	410	436	463	530	596	729	863
33	0.1130	0.01003	113	159	194	222	247	270	290	309	326	342	372	396	424	452	480	549	618	756	894
32	0.1160	0.01057	119	168	204	234	260	284	306	325	343	360	392	418	447	476	505	578	651	796	942
31	0.1200	0.01131	127	179	218	250	278	304	327	348	367	386	420	447	478	510	541	619	696	852	1010
1/8"	0.1250	0.01227	138	195	237	272	302	330	355	377	399	418	456	485	519	553	587	671	756	924	1100
30	0.1285	0.01296	146	206	250	287	319	348	375	399	421	442	481	512	548	584	620	709	798	976	1160
29	0.1360	0.01433	164	230	280	322	357	390	420	447	472	495	539	575	615	655	695	795	893	1100	1300
28	0.1405	0.01549	174	246	299	343	381	416	448	476	503	528	575	612	655	698	740	847	954	1170	1380
9/64"	0.1406	0.01553	175	246	300	344	382	417	449	478	504	529	576	614	657	700	742	849	956	1170	1390
27	0.1440	0.01629	183	258	314	361	401	438	471	501	529	555	605	644	689	734	779	891	1010	1230	1460
26	0.1470	0.01697	191	269	327	376	417	456	491	522	551	579	630	671	718	764	811	928	1050	1280	1520
25	0.1495	0.01755	197	278	339	388	432	472	507	540	570	598	651	694	742	790	839	960	1080	1330	1570
24	0.1520	0.01815	204	288	350	402	446	490	525	558	589	619	674	718	768	818	867	992	1120	1370	1620
23	0.1540	0.01863	210	295	359	412	458	501	539	573	605	635	691	737	788	839	890	1020	1150	1410	1660
5/32"	0.1562	0.01917	216	304	370	424	472	515	554	589	623	653	711	758	811	863	916	1050	1180	1450	1710
22	0.1570	0.01936	218	307	373	428	476	520	560	595	629	660	713	765	819	872	925	1060	1200	1460	1730
21	0.1590	0.01986	223	315	383	440	488	534	574	611	645	677	737	785	840	894	949	1090	1230	1500	1770
20	0.1610	0.02036	229	323	393	451	501	547	589	626	661	694	756	805	861	917	973	1120	1260	1540	1820
19	0.1660	0.02164	243	343	417	479	532	581	625	665	703	738	803	855	915	975	1040	1190	1340	1630	1930
18	0.1695	0.02256	254	358	435	499	555	606	652	694	733	769	837	892	954	1020	1080	1240	1390	1700	2010
11/64"	0.1719	0.02320	261	368	447	513	571	623	671	713	753	790	861	917	981	1050	1110	1270	1430	1750	2070
17	0.1730	0.02351	264	373	453	520	578	632	680	723	763	801	872	929	994	1060	1130	1290	1450	1770	2100
16	0.1770	0.02461	277	390	475	545	605	661	711	756	799	839	913	973	1040	1110	1180	1350	1520	1860	2200
15	0.1800	0.02345	286	403	491	563	626	684	736	782	826	868	944	1010	1080	1150	1220	1400	1570	1920	2270
14	0.1820	0.02602	293	412	502	576	640	699	752	800	845	887	965	1030	1100	1180	1250	1430	1610	1960	2320
13	0.1850	0.02688	302	426	518	595	661	722	777	826	873	916	997	1060	1140	1210	1290	1470	1660	2030	2400
3/16"	0.1875	0.02761	310	437	532	611	679	742	798	849	896	941	1030	1100	1170	1250	1320	1510	1700	2080	2460
12	0.1890	0.02806	315	445	541	621	690	754	811	862	911	956	1050	1110	1190	1270	1340	1540	1730	2120	2500
11	0.1910	0.02865	322	454	552	634	704	770	828	881	930	976	1070	1140	1220	1290	1370	1570	1770	2160	2560
10	0.1930	0.02940	331	466	567	650	723	790	850	904	955	1010	1090	1170	1250	1330	1410	1610	1810	2220	2620
9	0.1960	0.03017	339	478	582	667	742	810	872	927	980	1030	1120	1200	1270	1360	1450	1650	1860	2280	2690
8	0.1990	0.03110	350	493	600	688	765	835	899	956	1010	1060	1160	1230	1320	1400	1490	1700	1920	2350	2770
7	0.2010	0.03173	357	503	612	702	780	852	917	975	1030	1090	1180	1260	1350	1430	1520	1740	1960	2390	2830
13/64"	0.2031	0.03241	364	513	625	717	797	870	937	996	1060	1110	1210	1290	1370	1460	1550	1780	2000	2450	2890
6	0.2040	0.03269	367	518	630	723	804	878	945	1010	1070	1120	1220	1300	1390	1480	1570	1790	2020	2470	2920
5	0.2055	0.03317	373	525	639	734	816	891	959	1020	1080	1130	1230	1320	1410	1500	1590	1820	2050	2500	2960
4	0.2090	0.03431	386	543	661	739	844	921	991	1060	1120	1170	1280	1360	1450	1550	1640	1880	2120	2590	2770
3	0.2130	0.03563	400	564	687	788	876	959	1030	1100	1160	1220	1330	1410	1510	1610	1710	1950	2200	2690	2830
7/32"	0.2187	0.03758	422	595	724	831	924	1010	1090	1160	1220	1280	1400	1490	1590	1700	1800	2060	2320	2830	2890
2	0.2210	0.03836	431	608	739	849	943	1030	1110	1180	1250	1310	1430	1520	1630	1730	1840	2100	2370	2890	2920
1	0.2280	0.04083	459	647	787	903	1010	1100	1180	1260	1330	1400	1520	1620	1730	1840	1950	2240	2520	3080	2960
A	0.2340	0.04301	483	681	829	951	1060	1160	1250	1330	1400	1470	1600	1700	1820	1940	2060	2360	2650	3240	3060
15/64"	0.2344	0.04314	485	683	831	954	1060	1160	1250	1330	1400	1470	1600	1710	1830	1950	2070	2360	2660	3250	3180
B	0.2380	0.04449	500	705	857	984	1100	1200	1290	1370	1450	1520	1650	1760	1880	2010	2130	2440	2740	3350	3350
C	0.2420	0.04600	517	725	916	1020	1130	1240	1330	1420	1500	1570	1710	1820	1950	2080	2200	2520	2840	3470	3420
D	0.2460	0.04733	534	733	975	1060	1170	1280	1370	1460	1550	1620	1770	1880	2010	2140	2280	2600	2930	3580	3640
$\mathrm{E}=1 / 4$ "	0.2500	0.04909	552	777	946	1090	1210	1320	1420	1510	1600	1680	1830	1940	2080	2210	2350	2690	3030	3700	4380
F	0.2570	0.05187	583	821	1000	1150	1280	1400	1500	1600	1690	1770	1930	2050	2200	2340	2480	2840	3200	3910	4620
G	0.2610	0.05350	601	847	1040	1190	1320	1440	1550	1650	1740	1830	1990	2120	2270	2410	2560	2930	3300	4030	4770
17/64"	0.2656	0.05542	623	878	1070	1230	1370	1490	1610	1710	1810	1890	2060	2190	2350	2500	2650	3030	3410	4180	4940
H	0.2660	0.05557	624	880	1070	1230	1370	1500	1610	1710	1810	1900	2070	2200	2350	2510	2660	3040	3420	4190	4950

[^1]
Conversions, Equivalents, and Physical Data

Capacities of Spuds and Orifices (continued)																					
DRILLDESIGNATION	diameter,INCHES	AREA,sQUARE INCHES	CAPACITIES IN CFH OF 0.6 GRAVITY HIGH PRESSURE NATURAL GAS																		
			Usstream Pressure, Psi																		
						4		6	7	8		10	12		16						
	$\begin{aligned} & 0.27 \\ & 0.28 \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|c\|c\|c\|} \hline 0.006102 \\ 0.006113 \\ 0.006605 \end{array}$	$\begin{array}{\|l\|} \hline 657 \\ 667 \\ 697 \\ \hline 978 \\ \hline 982 \\ \hline 72 \end{array}$	$\begin{aligned} & \hline 916 \\ & 9.95 \\ & 983 \\ & 984 \\ & 9050 \\ & 1050 \end{aligned}$	$\begin{aligned} & 1120 \\ & \hline 1200 \\ & \hline 12000 \\ & 1212000 \\ & \hline 120 \end{aligned}$		1430 1450 1530 1530 1630	1560 1620 167 1780 1780	$\begin{aligned} & 1688 \\ & \hline 1850 \\ & \hline 1850 \\ & \hline 1800 \\ & \hline \end{aligned}$		1890 19060 2020 2020 2150	1980 2060 20200 21220 2250 2250		$\begin{aligned} & 2300 \\ & 23290 \\ & 24250 \\ & 2450 \\ & 2 \end{aligned}$	2460 250 2580 2630 2800 280	$\begin{aligned} & 2620 \\ & \hline 2820 \\ & 272800 \\ & 282000 \\ & \hline \end{aligned}$		3180 3300 330 3400 3610$\|$	3580 3710 3820 3830 4070		$\begin{aligned} & \begin{array}{c} 5180 \\ 5350 \\ 5350 \\ 5550 \\ 5540 \\ 5890 \end{array} \end{aligned}$
$\begin{aligned} & M \\ & \begin{array}{c} 9.64^{4} \\ 516^{0} \end{array} \end{aligned}$	$\begin{aligned} & \text { a.302 } \\ & 0.314 \end{aligned}$		$\begin{array}{\|l\|} \hline 788 \\ 778 \\ 885 \\ 888 \\ 881 \\ \hline 81 \end{array}$	$\begin{aligned} & 10900 \\ & \hline 11000 \\ & 11200 \\ & 1250 \end{aligned}$	1320 1320 1380 1480 1520 150	$\left.\begin{array}{\|l\|l\|} \hline 1520 \\ \hline 15300 \\ \hline 1500 \\ \hline 17000 \\ 17740 \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|c\|} \hline 1680 \\ 17170 \\ 1700 \\ 1890 \\ 1930 \end{array} \right\rvert\,$		1980 2000 2070 2220 220	2100 2130 2230 2300 2410 240		2330 2350 2350 2420 2620 2600	$\begin{aligned} & 2540 \\ & \left.\begin{array}{l} 2540 \\ 25650 \\ 2885 \\ 2890 \\ 2901 \end{array} \right\rvert\, \end{aligned}$	$\begin{aligned} & 2710 \\ & \hline \end{aligned}$		3080 3220 3230 3450 3540$\|$	$\begin{aligned} & 3270 \\ & \hline \end{aligned}$	3740 37920 3920 420 4290	4210 4200 4410 4720 4830 4		$\begin{aligned} & \substack{6990 \\ 6790 \\ \hline 6890 \\ 6890 \\ 6990 \\ \hline 690 \\ \hline} \end{aligned}$
	$\begin{aligned} & 0.320 \\ & 0.3397 \end{aligned}$		920 950 972 1020 1050$\|$	13001350 1370 1370 1430140	1580 1630 1670 1700 1790$\|$	1820 1870 1920 2000 2060$\|$	2020 2080 2080 2120 220 2290	2200 2270 230 230 2400 2500	2370 2450 2500 2507 2690	2520 2600 2680 2780 2880 2	2650 2750 281 2802 2020 3020	2800 2890 2950 zose 3170		3240 3350 3420 357 3670		3690 380 3800 3070 4180	3920 4040 4140 4320 4440 $\|$	$\substack{4830 \\ \text { 4630 } \\ \text { 4740 } \\ \text { and } \\ 5080}$	5050 s510 5350 5350 5720 50	6180 63520 65820 6890 6990 $\|$	$\begin{aligned} & 7300 \\ & 7540 \\ & 7720 \\ & 78200 \end{aligned}$
$388^{\prime \prime}$	$\begin{aligned} & 0.368 \\ & 0.356 \\ & 0.356 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.1006 \\ & 0.1014 \\ & 0.1065 \\ & 0.1105 \end{aligned}\right.$	1070 1130 1120 1200 1240		1940 1940 1950 2050 2130 2	$\begin{aligned} & 2110 \\ & \left.\begin{array}{l} 2230 \\ 22500 \\ 2350 \\ 2350 \end{array} \right\rvert\, \end{aligned}$	$\begin{aligned} & \left.\begin{array}{l} 2340 \\ 2480 \\ 2450 \\ 2562 \\ 2620 \\ 2720 \end{array} \right\rvert\, \end{aligned}$	$\begin{array}{\|c} 2530 \\ \hline \end{array}$	2750 2950 2930 3080 3200	2930 3120 3120 3400 3400	$\left.\begin{array}{\|l\|l\|} \hline 3090 \\ 33700 \\ 3300 \\ 34500 \\ 3590 \end{array} \right\rvert\,$		3530 3740 3750 3950 4100	3760 4000 40010 4210 4370	4020 4260 4200 450 4670	4290 450 4570 4790 4980	$\begin{aligned} & 4550 \\ & \hline \end{aligned}$	5500 55050 5580 5800 600	5800 6200 6200 6550 6800 6	7770 7580 78020 8020 8330	$\begin{aligned} & 8480 \\ & 8970 \\ & 9890 \end{aligned}$
	$\begin{aligned} & 0.3967 \\ & 0.397 \\ & 0.404 \end{aligned}$	$\begin{aligned} & 0.111160 \\ & 0.1198 \\ & 0.11288 \\ & 0.1282 \end{aligned}$	$\begin{aligned} & 12500 \\ & \hline 1350 \\ & \hline 1350 \\ & 14400 \\ & 1300 \end{aligned}$	$\begin{aligned} & 19600 \\ & \substack{1900 \\ 1900 \\ 2030} \\ & 2030 \end{aligned}$	2150 2250 230 2300 2470 240$\|$		$\left.\begin{array}{\|l\|l\|} \hline 2950 \\ 29050 \\ 2955 \\ \text { 2050 } \\ 3150 \end{array} \right\rvert\,$	$\begin{aligned} & \text { 3000 } \\ & \text { 3000 } \\ & \text { 3200 } \\ & 33200 \\ & 34500 \end{aligned}$	3230 3360 3450 3570 3710	3 3300 3600 3680 3890 3940	3830 3800 38020 4160 4100	3810 3990 3990 4220 4370	1440 4350 44500 4780 470	$\begin{array}{\|c} \substack{4610 \\ 4630 \\ 4740 \\ \text { 4990 } \\ 5007} \end{array}$	420 4200 500 51020 5240 5420	5030 5270 5400 5578 5780		6100 6350 6550 6750 7010	$\left.\begin{array}{\|c\|c\|} \hline 8770 \\ 7730 \\ 7880 \\ 7880 \\ 7890 \end{array} \right\rvert\,$	8810 8820 9830 9330 9660	
$\begin{aligned} & \begin{array}{l} 13 / 2^{2} \\ \hline 27 / 4^{4} \\ \hline 776^{\circ} \\ 29964^{\prime} \end{array} \end{aligned}$	0	$\begin{aligned} & 0.13408 \\ & 0.193 \\ & 0.1503 \\ & 0.1661 \end{aligned}$	$\begin{aligned} & 1460 \\ & \hline 150 \\ & \hline 1500 \\ & \hline 1500 \\ & \hline 1690 \\ & \hline 1820 \end{aligned}$	2060 2130 2230 2350 250 250	2500 2590 2700 290 3110	2870 2970 anco 3350 3500 50	3190 3300 3340 370 4000 400$\|$	$\begin{array}{\|l\|} \hline 3480 \\ 3600 \\ 3760 \\ 4040 \\ 4230 \\ \hline \end{array}$	$\begin{aligned} & \begin{array}{l} 3750 \\ 3870 \\ \hline 880 \\ 43950 \\ 46500 \end{array} \\ & \hline \end{aligned}$	3990 3930 430 4620 5000	$\begin{array}{\|l\|l\|} \hline 42100 \\ \text { 4350 } \\ \text { 45400} \\ \text { } 8140 \\ \hline \end{array}$		$\left.\begin{array}{\|l\|l\|} \hline 8100 \\ 49700 \\ 55950 \\ 55980 \\ 5990 \end{array} \right\rvert\,$		5480 5670 5900 6380 6820		$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 68080 \\ \hline 6800 \\ 77700 \end{array} \right\rvert\,$	7090 77350 7850 82820 8820	7980 850 850 9850 9930	9760 10100 10.600 lit 4200 1200	
	$\begin{aligned} & 0.50 \\ & 0.519 \\ & 0.531 \end{aligned}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 0.1762 \\ 0.1483 \\ 0.1068 \\ 0.2088 \\ 0.2217 \\ \hline \end{array}$	$\left.\begin{array}{\|l\|l\|} \hline 1940 \\ \text { 2070 } \\ \text { 2200 } \\ \text { 2350 } \\ 24990 \end{array} \right\rvert\,$	$\begin{aligned} & 27400 \\ & \hline 2300 \\ & 3310 \\ & 3310 \\ & 35510 \end{aligned}$	$\substack{3330 \\ 3550 \\ 3790 \\ 4030 \\ 4280}$ 4		4250 4530 4530 早 5450 5450		4990 $\substack{4330 \\ 5680 \\ 6040 \\ 6410}$	5510 5670 5370 6420 6820 6820	5010 59500 59380 6780 7200		6410 6840 7820 72750 7 8230 8$\|$	6820 7770 7850 8750 8760	7300 7790 8390 8430 9370	7870 88000 88900 9990 9980					
	$\begin{aligned} & 0.5625 \\ & \hline 0.578 \\ & 0.5694 \end{aligned}$		$\begin{aligned} & 2790 \\ & 2950 \\ & 3950 \\ & 3110 \\ & 3280 \end{aligned}$	$\begin{aligned} & 3720 \\ & \begin{array}{l} 3200 \\ 3440 \\ 4350 \\ 3490 \\ 4620 \end{array} \end{aligned}$		5200 5500 58100 S6 6430 6450	5788 510 6450 640 7810 7170 $\|$		6790 7780 7590 75000 8430 8	7200 7800 8800 8800 8900 8900	$\substack{7830 \\ 8800 \\ 88500 \\ 8900 \\ 9400}$	8010 8770 8950 9450 9940 9940	$\left\{\begin{array}{l} 8720 \\ \hline 9200 \\ 9270 \\ 9700 \\ 10000 \\ 10000 \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline 9820 \\ 9820 \end{array}$							
			$\begin{aligned} & 3450 \\ & \begin{array}{l} 3500 \\ 3800 \\ 3800 \\ 3880 \\ 4170 \end{array} \end{aligned}$		5210 62100 65820 6830 7150$\|$	6790 7 7730 7780 8820 820	7540 79320 78320 8720 9130 9			$\begin{array}{\|l\|} 9430 \\ 9910 \end{array}$											
		$\begin{aligned} & 0.0441 \\ & 0.4794 \\ & 0.5175 \\ & 0.5599 \\ & 0.591 \end{aligned}$		6430 7000 7890 z820 8850 8	$\begin{aligned} & \begin{array}{l} 8820 \\ 89020 \\ 9290 \\ 9990 \\ 19800 \end{array} \\ & 1 \end{aligned}$	8970 an70 1000 115000 12400															
			$\begin{aligned} & 6750 \\ & \hline \end{aligned}$																		

Technical

Conversions, Equivalents, and Physical Data

Technical

Conversions，Equivalents，and Physical Data

SPECIFIC GRAVITY
（WITH RESPECT TO $\mathrm{H}_{2} \mathrm{O}$ 60우）

0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{7}$	$\stackrel{\rightharpoonup}{*}$	$\stackrel{\rightharpoonup}{7}$
잉	¢	8	\bigcirc	J	U	¢	${ }_{\square}^{\circ}$	9	\bigcirc	8	\bigcirc	\bigcirc	ज	No

Э。 \exists YOIVYヨdWヨl

Technical

Conversions, Equivalents, and Physical Data

Effect of Inlet Swage On Critical Flow C_{g} Requirements

Conversions, Equivalents, and Physical Data

Seat Leakage Classifications (In Accordance with ANSI/FCI 70-3-2004)		
LEAKAGE CLASS DESIGNATION	DESCRIPTION	MAXIMUM LEAKAGE ALLOWABLE
1	A modification of any Class II, III or IV regulator where the design intent is the same as the basic class, but by agreement between user and supplier, no test is required.	----
11	This class establishes the maximum permissible leakage generally associated with commercial double-seat regulators with metal-to-metal seats.	0.5\% of maximum Cv
III	This class establishes the maximum permissible leakage generally associated with Class II, but with a higher degree of seat and seal tightness.	0.1\% of maximum Cv
IV	This class establishes the maximum permissible leakage generally associated with commercial unbalanced single-seat regulators with metal-to-metal seats.	0.01\% of maximum Cv
VI	This class establishes the maximum permissible seat leakage generally associated with resilient seating regulators either balanced or unbalanced with O-rings or similar gapless seals.	Leakage per following table as expressed in ml per minute versus seat diameter.
VII	This class establishes the maximum permissible seat leakage generally associated with Class VI, but with test performed at the maximum operating differential pressure.	Leakage per following table as expressed in ml per minute versus seat diameter.

Nominal Port Diameter and Leak Rate		
NOMINAL PORT DIAMETER	LEAK RATE	
Millimeters (Inches)	Standard ml per Minute ${ }^{(3)}$	Bubbles per Minute ${ }^{(1)}$
$\begin{gathered} \leq 25(\leq 1)^{(2)} \\ 38(1.5) \\ 51(2) \\ 64(2.5) \\ 76(3) \\ 102(4) \\ 152(6) \\ 203(8) \\ 250(10) \\ 300(12) \\ 350(14) \\ 400(16) \end{gathered}$	$\begin{aligned} & \hline 0,15 \\ & 0,30 \\ & 0,45 \\ & 0,60 \\ & 0,90 \\ & 1,70 \\ & 4,00 \\ & 6,75 \\ & 11,1 \\ & 16,0 \\ & 21,6 \\ & 28,4 \end{aligned}$	$\begin{gathered} \hline 1^{(2)} \\ 2 \\ 3 \\ 4 \\ 6 \\ 11 \\ 27 \\ 45 \\ ---- \\ ---- \end{gathered}$
1. Bubbles per minute as tabulated are an easily measured suggested alternative based on a suitable calibrated measuring device in this case a 0.24 inch (6 mm) O.D. $x 0.04$ inch (1 mm) wall tube submerged in water to a depth of from 0.12 to 0.24 inch (3 to 6 mm). The tube end shall be cut square and smooth with no chamfers or burrs and the tube axis shall be perpendicular to the surface of the water. Other apparatus may be constructed and the number of bubbles per minute may differ from those shown as long as they correctly indicate the flow in ml per minute. 2. If valve seat diameter differs by more than 0.08 inch $(2 \mathrm{~mm})$ from one of the valves listed, the leakage rate may be obtained by interpolation assuming that the leakage rate varies as the square of the seat diameter. 3. Standard millimeters based on $60^{\circ} \mathrm{F}\left(16{ }^{\circ} \mathrm{C}\right)$ and 14.73 psia (1,016 bar a).		

Conversions, Equivalents, and Physical Data

Flange, Valve Size, and Pressure-Temperature Rating Designations

Sizes of ASME flanges are designated as NPS (for "nominal pipe size"). The nominal size is based on inches, but the units are not required in the designation. For example: NPS 2 is the size. Pressure ratings are designated by class. For example, CL150 is the rating. ASME designations replace ANSI designations.

Sizes of EN and ISO flanges are designated with DN (for "nominal diameter"). The nominal diameter is based on millimeters, but the units are not included in the designation. For example: DN 50 is the size. Pressure ratings are designated by PN (for "nominal pressure"). For example PN 40 is the pressure rating. EN and ISO designations replace DIN designations through PN 100.

ASME B16.5 flanges will mate with EN 1759 flanges but not with EN 1092 flanges (formerly DIN flanges). ASME B16.5 flanges will mate with most ISO 7005 flanges.

Common size designations in wide use are shown in the table below.
A summary of flange terminology is shown in the table below, and equivalency of flanges is shown in the table on the following page.

Pipe Thread Standards

There are three pipe thread standards that are accepted globally:

- NPT, ASME B1.20.1: General-purpose pipe threads (inches).
- G Series, ISO 228-1: Pipe threads for use where pressure-tight joints are not made on the threads. The internal and external threads are not tapered but are parallel or straight.
- R Series, ISO 7/1: Pipe threads for use where pressure-tight joints are made on the threads. The internal thread is parallel (straight) or tapered; external is always tapered.

Notes

Japanese (JIS) valves and flanges are designated according to JIS standards.

European Norm flange types, such as flat-face and raised-face are designated Type A, Type B, Type C. These types do not correspond to the DIN 2526 Form A, Form D, etc., designations.

Common Size Designations																	
NPS	1/2	3/4	1	1-1/2	2	2-1/2	3	4	6	8	10	12	14	16	18	20	24
DN	15	20	25	40	50	65	80	100	150	200	250	300	350	400	450	500	600

Summary of Flange Terminology			
	ASME	EUROPEAN NORM	EXAMPLE OF PRINTED PRESENTATION
Pressure Rating	CLASS	PN	CL300 or CL300, PN 40
Size	NPS	DN	NPS 2, DN 50
Pipe Threads (Internal or External)	NPT	NPT, G (Straight), R (Tapered)	G 1/4, 1/4 NPT, 1/4 NPT Internal (or External)

TECHNICAL

Conversions, Equivalents, and Physical Data

Equivalency Table					
	Iso	ASME	din	EUROPEAN NORM	LIMITATIONS
ASME and European Norm Only	----	Class Flanges ASME B16.5	----	EN 1759-1	Specifies ASTM materials but also permits European materials per EN 1092-1.
European Norm Only	----			EN 1092	Through PN 100 ${ }^{(1)}$
DIN Only		----	DIN ${ }^{(2)}$	----	Above PN 100 ${ }^{(1)}$
ISO and ASME Only	ISO 7005	Class Flanges ASME B16.5		--	A few sizes are compatible to previous DIN standards. An older version contained flange designations that do not appear in the current standard.
1. DIN is no longer used except for pressure ratings above PN 100. 2. DIN standards $2628,2629,2638,2548,2549,2550$, and 2551.					

Standard Pressure-Temperature Ratings for ASME CL150 Valve Bodies ${ }^{(1)}$					
SERVICE TEMPERATURE, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	WORKING PRESSURE, PSIG (bar)				
	LCB	LCC/WCC	WCB	CF8 or 304	CF8M/CF3M
$\begin{gathered} -20 \text { to } 100(-29 \text { to } 38) \\ 200(93) \end{gathered}$	$\begin{aligned} & 265(18,3) \\ & 255(17,6) \end{aligned}$	$\begin{aligned} & 290(20,0) \\ & 260(17,9) \end{aligned}$	$\begin{aligned} & 285(19,7) \\ & 260(17,9) \end{aligned}$	$\begin{aligned} & 275(19,0) \\ & 230(15,9) \end{aligned}$	$\begin{aligned} & 275(19,0) \\ & 235(16,2) \end{aligned}$
$\begin{aligned} & 300(149) \\ & 400(204) \end{aligned}$	$\begin{aligned} & 230(15,9) \\ & 200(13,8) \end{aligned}$	$\begin{aligned} & 230(15,9) \\ & 200(13,8) \end{aligned}$	$\begin{aligned} & 230(15,9) \\ & 200(13,8) \end{aligned}$	$\begin{aligned} & 205(14,1) \\ & 190(13,1) \end{aligned}$	$\begin{aligned} & 215(14,8) \\ & 195(13,4) \end{aligned}$
$\begin{aligned} & 500(260) \\ & 600(316) \\ & \hline \end{aligned}$	$\begin{gathered} 170(11,7) \\ 140(9,7) \end{gathered}$	$\begin{gathered} 170(11,7) \\ 140(9,7) \\ \hline \end{gathered}$	$\begin{gathered} 170(11,7) \\ 140(9,7) \\ \hline \end{gathered}$	$\begin{gathered} 170(11,7) \\ 140(9,7) \\ \hline \end{gathered}$	$\begin{gathered} 170(11,7) \\ 140(9,7) \end{gathered}$
$\begin{aligned} & 650(343) \\ & 700(371) \end{aligned}$	$\begin{aligned} & 125(8,6) \\ & 110(7,6) \end{aligned}$				

Standard Pressure-Temperature Ratings for ASME CL300 Valve Bodies ${ }^{(1)}$					
SERVICE TEMPERATURE, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	WORKING PRESSURE, PSIG (bar)				
	LCB	LCC/WCC	WCB	CF8 or 304	CF8M/CF3M
$\begin{gathered} -20 \text { to } 100(-29 \text { to } 38) \\ 200(93) \end{gathered}$	$\begin{aligned} & 695(47,9) \\ & 660(45,5) \end{aligned}$	$\begin{aligned} & 750(51,7) \\ & 750(51,7) \end{aligned}$	$\begin{aligned} & 740(51,0) \\ & 680(46,9) \end{aligned}$	$\begin{aligned} & 720(49,6) \\ & 600(41,4) \end{aligned}$	$\begin{aligned} & 720(49,6) \\ & 620(42,7) \end{aligned}$
$\begin{aligned} & 300(149) \\ & 400(204) \end{aligned}$	$\begin{aligned} & 640(44,1) \\ & 615(42,4) \end{aligned}$	$\begin{aligned} & 730(50,3) \\ & 705(48,6) \end{aligned}$	$\begin{aligned} & 655(45,2) \\ & 635(43,8) \end{aligned}$	$\begin{aligned} & 540(37,2) \\ & 495(34,1) \end{aligned}$	$\begin{aligned} & 560(38,6) \\ & 515(35,5) \end{aligned}$
$\begin{aligned} & 500(260) \\ & 600(316) \end{aligned}$	$\begin{aligned} & 585(40,3) \\ & 550(37,9) \end{aligned}$	$\begin{aligned} & 665(45,9) \\ & 605(41,7) \end{aligned}$	$\begin{aligned} & 605(41,7) \\ & 570(39.3) \end{aligned}$	$\begin{aligned} & 465(32,1) \\ & 440(30.3) \end{aligned}$	$\begin{aligned} & 480(33,1) \\ & 450(31,0) \end{aligned}$
$\begin{aligned} & 650(343) \\ & 700(371) \end{aligned}$	$\begin{aligned} & 535(36,8) \\ & 510(35,2) \end{aligned}$	$\begin{aligned} & 590(40,7) \\ & 555(38,3) \end{aligned}$	$\begin{aligned} & 550(38,0) \\ & 530(36,5) \end{aligned}$	$\begin{aligned} & 430(29,6) \\ & 420(29,0) \end{aligned}$	$\begin{aligned} & 440(30,3) \\ & 435(30,0) \end{aligned}$

TECHNICAL

Conversions, Equivalents, and Physical Data

Standard Pressure-Temperature Ratings for ASME CL600 Valve Bodies ${ }^{(1)}$					
SERVICE TEMPERATURE, ${ }^{\circ} \mathrm{F}\left({ }^{\circ} \mathrm{C}\right)$	WORKING PRESSURE, PSIG (bar)				
	LCB	LCC/wCC	WCB	CF8 or 304	CF8M/CF3M
$\begin{gathered} -20 \text { to } 100(-29 \text { to } 38) \\ 200(93) \end{gathered}$	$\begin{aligned} & 1395(96,2) \\ & 1320(91,0) \end{aligned}$	$\begin{aligned} & 1500(103) \\ & 1500(103) \end{aligned}$	$\begin{aligned} & 1480(102) \\ & 1360(93,7) \end{aligned}$	$\begin{aligned} & 1440(99,3) \\ & 1200(82,7) \end{aligned}$	$\begin{aligned} & 1440(99,3) \\ & 1240(85,5) \end{aligned}$
$\begin{aligned} & 300(149) \\ & 400(204) \end{aligned}$	$\begin{aligned} & 1275(87,9) \\ & 1230(84,8) \end{aligned}$	$\begin{aligned} & 1455(100) \\ & 1405(97,0) \end{aligned}$	$\begin{aligned} & 1310(90,3) \\ & 1265(87,2) \end{aligned}$	$\begin{gathered} 1075(74,1) \\ 995(68,6) \end{gathered}$	$\begin{aligned} & 1120(77,2) \\ & 1025(70,7) \end{aligned}$
$\begin{aligned} & 500(260) \\ & 600(316) \end{aligned}$	$\begin{aligned} & 1175(81,0) \\ & 1105(76,2) \end{aligned}$	$\begin{aligned} & 1330(91,7) \\ & 1210(83,4) \end{aligned}$	$\begin{aligned} & 1205(83,1) \\ & 1135(78,3) \end{aligned}$	$\begin{aligned} & 930(64,1) \\ & 885(61,0) \end{aligned}$	$\begin{aligned} & 955(65,8) \\ & 900(62,1) \end{aligned}$
$\begin{aligned} & 650(343) \\ & 700(371) \end{aligned}$	$\begin{aligned} & 1065(73,4) \\ & 1025(70,7) \end{aligned}$	$\begin{aligned} & 1175(81,0) \\ & 1110(76,5) \end{aligned}$	$\begin{aligned} & 1100(75,8) \\ & 1060(73,1) \end{aligned}$	$\begin{aligned} & 865(59,6) \\ & 845(58,3) \end{aligned}$	$\begin{aligned} & 885(61,0) \\ & 870(60,0) \end{aligned}$
1. Table information is extracted from the Valve-Flanged, Threaded, and Welding End, ASME Standard B16.34-2004. These tables must be used in accordance with the ASME standar					

temperature, ${ }^{\circ} \mathrm{C}$

- - -	CLASS B (1"-12")
----	CLASS A (1"-12")
--	CLASS B (14"-24")
	CLASS B ($1^{\prime \prime}-12^{\prime \prime}$)
....	CLASS A (1"-12")
- -	CLASS B (14"-24")

Pressure/Temperature Ratings for ASTM A126 Cast Iron Valves

TECHNICAL

Conversions, Equivalents, and Physical Data

Diameter of Bolt Circles						
NOMINAL PIPE SIZE, INCHES	$\begin{gathered} \text { ASMECL125 (CAST IRON) } \\ \text { OR CL150 } \\ \text { (STEEL) }{ }^{(1)} \end{gathered}$	$\begin{aligned} & \text { ASME CL250 } \\ & \text { (CAST IRON) OR } \\ & \text { CL300 } \\ & (\text { STEEL })^{(2)} \end{aligned}$	$\begin{aligned} & \text { ASME } \\ & \text { CL600 } \end{aligned}$	$\begin{aligned} & \text { ASME } \\ & \text { CL900 } \end{aligned}$	$\begin{aligned} & \text { ASME } \\ & \text { CL1500 } \end{aligned}$	$\begin{aligned} & \text { ASME } \\ & \text { CL2500 } \end{aligned}$
$\begin{gathered} 1 \\ 1-1 / 4 \\ 1-1 / 2 \\ 2 \\ 2-1 / 2 \end{gathered}$	$\begin{aligned} & 3.12 \\ & 3.50 \\ & 3.88 \\ & 4.75 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.88 \\ & 4.50 \\ & 5.00 \\ & 5.88 \end{aligned}$	$\begin{aligned} & 3.50 \\ & 3.88 \\ & 4.50 \\ & 5.00 \\ & 5.88 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 4.38 \\ & 4.88 \\ & 6.50 \\ & 7.50 \end{aligned}$	$\begin{aligned} & 4.00 \\ & 4.38 \\ & 4.88 \\ & 6.50 \\ & 7.50 \end{aligned}$	$\begin{aligned} & 4.25 \\ & 5.12 \\ & 5.75 \\ & 6.75 \\ & 7.75 \end{aligned}$
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 8 \end{aligned}$	$\begin{gathered} 6.00 \\ 7.50 \\ 8.50 \\ 39.50 \\ 11.75 \end{gathered}$	$\begin{gathered} 6.62 \\ 7.88 \\ 9.25 \\ 10.62 \\ 13.00 \end{gathered}$	$\begin{gathered} 6.62 \\ 8.50 \\ 10.50 \\ 11.50 \\ 13.75 \end{gathered}$	$\begin{gathered} 7.50 \\ 9.25 \\ 11.00 \\ 12.50 \\ 15.50 \end{gathered}$	$\begin{gathered} 8.00 \\ 9.50 \\ 11.50 \\ 12.50 \\ 15.50 \end{gathered}$	$\begin{gathered} 9.00 \\ 10.75 \\ 12.75 \\ 14.50 \\ 17.25 \end{gathered}$
$\begin{aligned} & 10 \\ & 12 \\ & 14 \\ & 16 \\ & 18 \end{aligned}$	$\begin{aligned} & 14.25 \\ & 17.00 \\ & 18.75 \\ & 21.25 \\ & 22.75 \end{aligned}$	$\begin{aligned} & 15.25 \\ & 17.75 \\ & 20.25 \\ & 22.50 \\ & 24.75 \end{aligned}$	$\begin{aligned} & 17.00 \\ & 19.25 \\ & 20.75 \\ & 23.75 \\ & 25.75 \end{aligned}$	$\begin{aligned} & 18.50 \\ & 21.00 \\ & 22.00 \\ & 24.25 \\ & 27.00 \end{aligned}$	$\begin{aligned} & 19.00 \\ & 22.50 \\ & 25.00 \\ & 27.75 \\ & 30.50 \end{aligned}$	$\begin{aligned} & 21.75 \\ & 24.38 \\ & ----- \\ & ---- \end{aligned}$
$\begin{aligned} & 20 \\ & 24 \\ & 30 \\ & 36 \\ & 42 \\ & 48 \end{aligned}$	$\begin{aligned} & 25.00 \\ & 29.50 \\ & 36.00 \\ & 42.75 \\ & 49.50 \\ & 56.00 \end{aligned}$	$\begin{aligned} & 27.00 \\ & 32.00 \\ & 39.25 \\ & 46.00 \\ & 52.75 \\ & 60.75 \end{aligned}$	$\begin{aligned} & 28.50 \\ & 33.00 \\ & ----- \\ & ---- \\ & \hline--- \end{aligned}$	$\begin{aligned} & 29.50 \\ & 35.50 \\ & ----- \\ & ---- \end{aligned}$	$\begin{aligned} & 32.75 \\ & 39.00 \\ & ----- \\ & ---- \end{aligned}$	
1. Sizes 1 through 12-inches also apply to ASME Class 150 bronze flanges. 2. Sizes 1 through 8 -inches also apply to ASME Class 300 bronze flanges.						

ASME Face-To-Face Dimensions for Flanged Regulators						
BODY SIZE, INCHES	ASME CLASS AND END CONNECTIONS (INCH DIMENSIONS ARE IN ACCORDANCE WITH ISA S4.01.1-1997)					
	CL125 FF (Cast Iron) CL150 RF (Steel), Inches (mm)	CL250 RF (Cast Iron) CL300 RF (Steel), Inches (mm)	CL150 RJT (Steel), Inches (mm)	CL300 RJT (Steel), Inches (mm)	$\begin{gathered} \text { CL600 RF (Steel), } \\ \text { Inches (mm) } \end{gathered}$	CL600 RJT (Steel), Inches (mm)
$\begin{gathered} \hline 1 \\ 1-1 / 4 \\ 1-1 / 2 \end{gathered}$	$\begin{aligned} & 7.25(184) \\ & 7.88(200) \\ & 8.75(222) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.75(197) \\ & 8.38(213) \\ & 9.25(235) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.75(197) \\ & 8.38(213) \\ & 9.25(235) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.25(210) \\ & 8.88(226) \\ & 9.75(248) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.25(210) \\ & 9.00(229) \\ & 9.88(251) \\ & \hline \end{aligned}$	$\begin{aligned} & 8.25(210) \\ & 9.00(229) \\ & 9.88(251) \\ & \hline \end{aligned}$
$\begin{gathered} 2 \\ 2-1 / 2 \\ 3 \\ \hline \end{gathered}$	$\begin{aligned} & 10.00(254) \\ & 10.88(276) \\ & 11.75(298) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.50(267) \\ & 11.50(292) \\ & 12.50(317) \\ & \hline \end{aligned}$	$\begin{aligned} & 10.50(267) \\ & 11.38(289) \\ & 12.25(311) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.12(282) \\ & 12.12(308) \\ & 13.12(333) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.25(286) \\ & 12.25(311) \\ & 13.25(337) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.38(289) \\ & 12.38(314) \\ & 13.38(340) \\ & \hline \end{aligned}$
$\begin{aligned} & 4 \\ & 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 13.88(353) \\ & 17.75(451) \\ & 21.38(543) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.50(368) \\ & 18.62(473) \\ & 22.38(568) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.38(365) \\ & 18.25(464) \\ & 21.88(556) \\ & \hline \end{aligned}$	$\begin{aligned} & 15.12(384) \\ & 19.25(489) \\ & 23.00(584) \\ & \hline \end{aligned}$	$\begin{aligned} & 15.50(394) \\ & 20.00(508) \\ & 24.00(610) \\ & \hline \end{aligned}$	$\begin{aligned} & 15.62(397) \\ & 20.12(511) \\ & 24.12(613) \\ & \hline \end{aligned}$
$\begin{aligned} & 10 \\ & 12 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & 26.50(673) \\ & 29.00(737) \\ & 40.00(1016) \\ & \hline \end{aligned}$	$\begin{aligned} & 27.88 \text { (708) } \\ & 30.50(775) \\ & 41.62(1057) \\ & \hline \end{aligned}$	$\begin{aligned} & 27.00(686) \\ & 29.50(749) \\ & 40.50(1029) \\ & \hline \end{aligned}$	$\begin{aligned} & 28.50(724) \\ & 31.12(790) \\ & 42.25(1073) \\ & \hline \end{aligned}$	$\begin{aligned} & 29.62(752) \\ & 32.25 \text { (819) } \\ & 43.62 \text { (1108) } \\ & \hline \end{aligned}$	$\begin{aligned} & 29.75(756) \\ & 32.38(822) \\ & 43.75(1111) \\ & \hline \end{aligned}$
FF-Flat-faced, RF—Raised-faced, and RTJ—Ring Type Joint						

Conversions, Equivalents, and Physical Data

Wear and Galling Resistance Chart of Material Combinations							
MATERIAL	304 STAINLESS STEEL	316 STAINLESS STEEL	BRONZE	INCONEL*	MONEL*	HASTELLOY ${ }^{\text {® }}$ C	NICKEL
304 Stainless Steel 316 Stainless Steel Bronze Inconel ${ }^{\text {s }}$ Monel ${ }^{\text {º }}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	P P P P P	$\begin{aligned} & \text { F } \\ & \text { F } \\ & \text { S } \\ & \text { S } \\ & \text { S } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{P} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$
Hastelloy ${ }^{\circledR}$ C Nickel Alloy 20 Type 416 Hard Type 440 Hard	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$
17-4PH ENC ${ }^{(1)}$ Cr Plate Al Bronze	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \end{aligned}$	F F F F	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \\ & S \end{aligned}$	$\begin{aligned} & \hline F \\ & F \\ & F \\ & F \\ & \hline \end{aligned}$	$\begin{aligned} & \hline F \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline F \\ & \hline F \\ & S \\ & S \\ & \hline \end{aligned}$
1. Electroless Nickel Coating S - Satisfactory F - Fair P- Poor							

- continued -

Wear and Galling Resistance Chart of Material Combinations (continued)							
MATERIAL	ALLOY 20	TYPE 416 HARD	TYPE 440 HARD	17-4PH	ENC ${ }^{(1)}$	Cr PLATE	Al Bronze
304 Stainless Steel 316 Stainless Steel Bronze Inconel ${ }^{\text {² }}$ Monel ${ }^{\text {T }}$	$\begin{aligned} & P \\ & P \\ & P \\ & S \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$
Hastelloy ${ }^{8}$ C Nickel Alloy 20 Type 416 Hard Type 440 Hard	$\begin{aligned} & \mathrm{F} \\ & \mathrm{P} \\ & \mathrm{P} \\ & \mathrm{~F} \\ & \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & F \\ & F \\ & F \\ & F \\ & F \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~F} \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$
$\begin{gathered} \text { 17-4PH } \\ \text { ENC(1) } \\ \text { Cr Plate } \\ \text { Al Bronze } \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~F} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	F	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{P} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{P} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{P} \end{aligned}$
1. Electroless Nickel Coating S - Satisfactory F - Fair P Poor							

Equivalent Lengths of Pipe Fittings and Valves																			
TYPE OF FITTING OR VALVE	LENGTHS IN FEET OF STANDARD PIPE																		
	Nominal Pipe Size in Inches																		
	1/2	3/4	1	1-1/4	1-1/2	2	2-1/2	3	4	6	8	10	12	14 O.D.	16 O.D.	18 O.D.	20 O.D.	24 O.D.	30 O.D.
Standard tee with entry or discharge through side	3.4	4.5	5.5	7.5	9.0	12	14	17	22	33	43	55	65	78	85	105	115	135	170
Standard elbow or run ${ }^{(1)}$ of tee reduced $1 / 2^{(2)}$	1.7	2.2	2.7	3.7	4.3	5.5	6.5	8	12	16	20	26	31	36	42	47	52	64	80
Medium sweep elbow or run ${ }^{(1)}$ of tee reduced $1 / 4^{(2)}$	1.3	1.8	2.3	3.0	3.7	4.6	5.4	6.8	9.0	14	18	22	26	30	35	40	43	55	67
Long sweep elbow or run ${ }^{(1)}$ of standard tee or butterfly valve	1	1.3	1.7	2.3	2.7	3.5	4.2	5.3	7	11	14	17	20	23	26	31	34	41	52
45° elbow	0.8	1.0	1.2	1.6	2.0	2.5	3.0	3.7	5.0	7.5	10	12	15	17	20	22	24	30	37
Close return bend	3.7	5.1	6.2	8.5	10	13	15	19	24	37	49	62	75	86	100	110	125	150	185
Globe valve, wide-open	0.6	22	27	40	43	45	65	82	120	170	240	290	340	400	440	500	550	680	850
Angle valve, wide-open	8.2	11	14	18	21	28	33	42	56	85	112	145	165	190	220	250	280	340	420
Swing check valve, wide-open	4.0	5.2	6.6	9.0	11	14	16	19	26	39	52	66	78	92	106	120	130	145	160
Gate valve, wide-open, or slight bushing reduction	0.4	0.5	0.6	0.8	0.9	1.2	1.3	1.7	2.3	3.5	4.5	5.7	6.7	8.0	9.0	11	12	14	17
1. A fluid is said to flow through the run of a tee when the flow is straight through the tee with no change of direction. 2. A tee is said to be reduced $1 / 4$ if the internal area of the smaller connecting pipe is 25% less than the internal area of the larger connecting pipe.																			

TECHNICAL

Conversions, Equivalents, and Physical Data

Pipe Data: Carbon and Allow Steel-Stainless Steel											
NOMINAL PIPE SIZE (INCHES)	OUTSIDE DIAMETER (INCHES)	IDENTIFICATION			$\begin{gathered} \text { WALL } \\ \text { THICKNESS (t) } \\ \text { (INCHES) } \end{gathered}$	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER (d) } \\ \text { (INCHES) } \end{gathered}$	AREA OF METAL (SQUARE INCHES)	TRANSVERSE INTERNAL AREA		WEIGHT PIPE (POUNDS PER FOOT)	WEIGHT WATER (POUNDS PER FOOT OF PIPE)
		Steel		Stainless Steel Schedule No.				(a)	(A)		
		Iron Pipe Size	Schedule No.					(Square Inches)	(Square Feet)		
1/8	0.405	STD	40	$\begin{aligned} & 10 \mathrm{~S} \\ & 40 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.068 \end{aligned}$	$\begin{aligned} & 0.307 \\ & 0.269 \end{aligned}$	$\begin{aligned} & 0.0548 \\ & 0.0720 \end{aligned}$	$\begin{aligned} & 0.0740 \\ & 0.0568 \end{aligned}$	$\begin{aligned} & 0.00051 \\ & 0.00040 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.032 \\ & 0.025 \end{aligned}$
		XS	80	80S	0.095	0.215	0.0925	0.0365	0.00025	0.31	0.016
1/4	0.540	STD	40	$\begin{aligned} & 10 \mathrm{~S} \\ & 40 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.088 \end{aligned}$	$\begin{aligned} & 0.410 \\ & 0.364 \end{aligned}$	$\begin{aligned} & 0.0970 \\ & 0.1250 \end{aligned}$	$\begin{aligned} & 0.1320 \\ & 0.1041 \end{aligned}$	$\begin{aligned} & 0.00091 \\ & 0.00072 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.045 \end{aligned}$
		XS	80	80 S	0.119	0.302	0.1574	0.0716	0.00050	0.54	0.031
$3 / 8$	0.675	STD	40	$\begin{aligned} & 10 \mathrm{~S} \\ & 40 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 0.065 \\ & 0.091 \end{aligned}$	$\begin{aligned} & 0.545 \\ & 0.493 \end{aligned}$	$\begin{aligned} & 0.1246 \\ & 0.1670 \end{aligned}$	$\begin{aligned} & 0.2333 \\ & 0.1910 \end{aligned}$	$\begin{aligned} & 0.00162 \\ & 0.00133 \end{aligned}$	$\begin{aligned} & 0.42 \\ & 0.57 \end{aligned}$	$\begin{aligned} & 0.101 \\ & 0.083 \end{aligned}$
		XS	80	80 S	0.126	0.423	0.2173	0.1405	0.00098	0.74	0.061
1/2	0.840	STD	$\begin{gathered} ---- \\ --- \\ 40 \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.083 \\ & 0.109 \end{aligned}$	$\begin{aligned} & 0.710 \\ & 0.674 \\ & 0.622 \end{aligned}$	$\begin{aligned} & 0.1583 \\ & 0.1974 \\ & 0.2503 \end{aligned}$	$\begin{aligned} & 0.3959 \\ & 0.3568 \\ & 0.3040 \end{aligned}$	$\begin{aligned} & 0.00275 \\ & 0.00248 \\ & 0.00211 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.67 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.172 \\ & 0.155 \\ & 0.132 \end{aligned}$
		$\begin{gathered} \hline \text { XS } \\ \hline--- \\ \text { XXS } \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \end{gathered}$	80S	$\begin{aligned} & 0.147 \\ & 0.187 \\ & 0.294 \end{aligned}$	$\begin{aligned} & 0.546 \\ & 0.466 \\ & 0.252 \end{aligned}$	0.3200 0.3836 0.5043	$\begin{gathered} \hline 0.2340 \\ 0.1706 \\ 0.050 \end{gathered}$	$\begin{aligned} & 0.00163 \\ & 0.00118 \\ & 0.00035 \end{aligned}$	$\begin{aligned} & 1.09 \\ & 1.31 \\ & 1.71 \end{aligned}$	$\begin{aligned} & 0.102 \\ & 0.074 \\ & 0.022 \end{aligned}$
3/4	1.050	STD	40	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.083 \\ & 0.113 \end{aligned}$	$\begin{aligned} & 0.920 \\ & 0.884 \\ & 0.824 \end{aligned}$	$\begin{aligned} & 0.2011 \\ & 0.2521 \\ & 0.3326 \end{aligned}$	$\begin{aligned} & 0.6648 \\ & 0.6138 \\ & 0.5330 \end{aligned}$	$\begin{aligned} & 0.00462 \\ & 0.00426 \\ & 0.00371 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.86 \\ & 1.13 \end{aligned}$	$\begin{aligned} & 0.288 \\ & 0.266 \\ & 0.231 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \end{gathered}$	$80 \mathrm{~S}$	$\begin{aligned} & 0.154 \\ & 0.219 \\ & 0.308 \end{aligned}$	$\begin{aligned} & 0.742 \\ & 0.612 \\ & 0.434 \end{aligned}$	0.4335 0.5698 0.7180	$\begin{gathered} 0.4330 \\ 0.2961 \\ 0.148 \end{gathered}$	$\begin{aligned} & 0.00300 \\ & 0.00206 \\ & 0.00103 \end{aligned}$	$\begin{aligned} & 1.47 \\ & 1.94 \\ & 2.44 \end{aligned}$	$\begin{aligned} & 0.188 \\ & 0.128 \\ & 0.064 \end{aligned}$
1	1.315	STD		$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.109 \\ & 0.133 \end{aligned}$	$\begin{aligned} & 1.185 \\ & 1.097 \\ & 1.049 \end{aligned}$	$\begin{aligned} & 0.2553 \\ & 0.4130 \\ & 0.4939 \end{aligned}$	$\begin{aligned} & 1.1029 \\ & 0.9452 \\ & 0.8640 \end{aligned}$	$\begin{aligned} & 0.00766 \\ & 0.00656 \\ & 0.00600 \end{aligned}$	$\begin{aligned} & 0.87 \\ & 1.40 \\ & 1.68 \end{aligned}$	$\begin{aligned} & 0.478 \\ & 0.409 \\ & 0.375 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \\ \hline \end{gathered}$	80S	$\begin{aligned} & 0.065 \\ & 0.250 \\ & 0.358 \end{aligned}$	$\begin{aligned} & 0.957 \\ & 0.815 \\ & 0.599 \end{aligned}$	0.6388 0.8365 1.0760	0.7190 0.5217 0.282	$\begin{aligned} & 0.00499 \\ & 0.00362 \\ & 0.00196 \end{aligned}$	$\begin{aligned} & \hline 2.17 \\ & 2.84 \\ & 3.66 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.312 \\ & 0.230 \\ & 0.122 \end{aligned}$
1-1/4	1.660	STD		$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.109 \\ & 0.140 \end{aligned}$	$\begin{aligned} & 1.530 \\ & 1.442 \\ & 1.380 \end{aligned}$	$\begin{aligned} & 0.3257 \\ & 0.4717 \\ & 0.6685 \end{aligned}$	$\begin{aligned} & 1.839 \\ & 1.633 \\ & 1.495 \end{aligned}$	$\begin{aligned} & 0.01277 \\ & 0.01134 \\ & 0.01040 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 1.81 \\ & 2.27 \end{aligned}$	$\begin{aligned} & 0.797 \\ & 0.708 \\ & 0.649 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \end{gathered}$	$\begin{gathered} \text { 80S } \\ ------~ \end{gathered}$	$\begin{aligned} & 0.191 \\ & 0.250 \\ & 0.382 \end{aligned}$	$\begin{aligned} & 1.278 \\ & 1.160 \\ & 0.896 \end{aligned}$	$\begin{gathered} 0.8815 \\ 1.1070 \\ 1.534 \end{gathered}$	$\begin{aligned} & 1.283 \\ & 1.057 \\ & 0.630 \end{aligned}$	$\begin{aligned} & 0.00891 \\ & 0.00734 \\ & 0.00438 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 3.76 \\ & 5.21 \end{aligned}$	$\begin{aligned} & 0.555 \\ & 0.458 \\ & 0.273 \end{aligned}$
1-1/2	1.900	STD	40	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.109 \\ & 0.145 \end{aligned}$	$\begin{aligned} & 1.770 \\ & 1.682 \\ & 1.610 \end{aligned}$	$\begin{aligned} & 0.3747 \\ & 0.6133 \\ & 0.7995 \end{aligned}$	$\begin{aligned} & 2.461 \\ & 2.222 \\ & 2.036 \end{aligned}$	$\begin{aligned} & 0.01709 \\ & 0.01543 \\ & 0.01414 \end{aligned}$	$\begin{aligned} & 1.28 \\ & 2.09 \\ & 2.72 \end{aligned}$	$\begin{aligned} & 1.066 \\ & 0.963 \\ & 0.882 \end{aligned}$
		$\begin{gathered} \hline \text { XS } \\ \hline--- \\ \text { XXS } \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ 160 \\ ---- \\ \hline \end{gathered}$	$\begin{gathered} 80 \mathrm{~S} \\ ---- \end{gathered}$	$\begin{aligned} & 0.200 \\ & 0.281 \\ & 0.400 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.338 \\ & 1.100 \end{aligned}$	$\begin{aligned} & 1.068 \\ & 1.429 \\ & 1.885 \end{aligned}$	$\begin{aligned} & 1.767 \\ & 1.406 \\ & 0.950 \end{aligned}$	$\begin{aligned} & 0.01225 \\ & 0.00976 \\ & 0.00660 \end{aligned}$	$\begin{aligned} & \hline 3.63 \\ & 4.86 \\ & 6.41 \\ & \hline \end{aligned}$	$\begin{gathered} 0.765 \\ 0.608 \\ 0.42 \end{gathered}$
2	2.375	STD		$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.065 \\ & 0.109 \\ & 0.154 \end{aligned}$	$\begin{aligned} & 2.245 \\ & 2.157 \\ & 2.067 \end{aligned}$	$\begin{gathered} 0.4717 \\ 0.7760 \\ 1.075 \end{gathered}$	$\begin{aligned} & 3.958 \\ & 3.654 \\ & 3.355 \end{aligned}$	$\begin{aligned} & 0.02749 \\ & 0.02538 \\ & 0.02330 \end{aligned}$	$\begin{aligned} & 1.61 \\ & 2.64 \\ & 3.65 \end{aligned}$	$\begin{aligned} & 1.72 \\ & 1.58 \\ & 1.45 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ -----~ \end{gathered}$	$\begin{gathered} 80 S \\ ----- \end{gathered}$	$\begin{aligned} & \hline 0.218 \\ & 0.344 \\ & 0.436 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.939 \\ & 1.687 \\ & 1.503 \end{aligned}$	$\begin{aligned} & 1.477 \\ & 2.190 \\ & 2.656 \end{aligned}$	$\begin{aligned} & 2.953 \\ & 2.241 \\ & 1.774 \end{aligned}$	$\begin{aligned} & 0.02050 \\ & 0.01556 \\ & 0.01232 \end{aligned}$	$\begin{aligned} & \hline 5.02 \\ & 7.46 \\ & 9.03 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.28 \\ & 0.97 \\ & 0.77 \end{aligned}$
Identification, wall thickness and weights are extracted from ASME B36.10 and B39.19. The notations STD, XS, and XXS indicate Standard, Extra Strong, and Double Extra Strong pipe, respectively. Transverse internal area values listed in "square feet" also represent volume in cubic feet per foot of pipe length.											

Conversions, Equivalents, and Physical Data

NOMINAL PIPE SIZE (INCHES)	OUTSIDE DIAMETER (INCHES)	IDENTIFICATION			WALL THICKNESS (t) (INCHES)	$\begin{gathered} \text { INSIDE } \\ \text { DIAMETER (d) } \\ \text { (INCHES) } \end{gathered}$	AREA OF METAL (SQUARE INCHES)	TRANSVERSE INTERNAL AREA		WEIGHT PIPE (POUNDS PER FOOT)	WEIGHT WATER (POUNDS PER FOOT OF PIPE)
		Steel		Stainless Steel Schedule No.				(a)			
		Iron Pipe Size	Schedule No.					(Square Inches)	(Square Feet)		
2-1/2	2.875	STD	$\begin{gathered} ---- \\ --- \\ 40 \end{gathered}$	$\begin{gathered} \hline 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.083 \\ & 0.120 \\ & 0.203 \end{aligned}$	$\begin{aligned} & 2.709 \\ & 2.635 \\ & 2.469 \end{aligned}$	$\begin{gathered} 0.7280 \\ 1.039 \\ 1.704 \end{gathered}$	$\begin{aligned} & 5.764 \\ & 5.453 \\ & 4.788 \end{aligned}$	$\begin{aligned} & 0.04002 \\ & 0.03787 \\ & 0.03322 \end{aligned}$	$\begin{aligned} & \hline 2.48 \\ & 3.53 \\ & 5.79 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.36 \\ & 2.07 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \end{gathered}$	80S	$\begin{aligned} & 0.279 \\ & 0.375 \\ & 0.552 \end{aligned}$	$\begin{aligned} & 2.323 \\ & 2.125 \\ & 1.771 \end{aligned}$	$\begin{aligned} & 2.254 \\ & 2.945 \\ & 4.028 \end{aligned}$	$\begin{aligned} & 4.238 \\ & 3.546 \\ & 2.464 \end{aligned}$	$\begin{aligned} & 0.02942 \\ & 0.02463 \\ & 0.01710 \end{aligned}$	$\begin{gathered} 7.66 \\ 10.01 \\ 13.69 \end{gathered}$	$\begin{aligned} & 1.87 \\ & 1.54 \\ & 1.07 \end{aligned}$
3	3.500	STD	$\begin{gathered} ---- \\ --- \\ 40 \end{gathered}$	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.083 \\ & 0.120 \\ & 0.216 \end{aligned}$	$\begin{aligned} & 3.334 \\ & 3.260 \\ & 3.068 \end{aligned}$	$\begin{gathered} \hline 0.8910 \\ 1.274 \\ 2.228 \end{gathered}$	$\begin{aligned} & 8.730 \\ & 8.347 \\ & 7.393 \end{aligned}$	$\begin{aligned} & 0.06063 \\ & 0.05796 \\ & 0.05130 \end{aligned}$	$\begin{aligned} & \hline 3.03 \\ & 4.33 \\ & 7.58 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.78 \\ & 3.62 \\ & 3.20 \end{aligned}$
		$\begin{gathered} \text { XS } \\ \hline--- \\ \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 160 \\ ---- \\ \hline \end{gathered}$	$80 \mathrm{~S}$	$\begin{aligned} & 0.300 \\ & 0.438 \\ & 0.600 \end{aligned}$	$\begin{aligned} & 2.900 \\ & 2.624 \\ & 2.300 \end{aligned}$	$\begin{aligned} & 3.016 \\ & 4.205 \\ & 5.466 \end{aligned}$	$\begin{aligned} & 6.605 \\ & 5.408 \\ & 4.155 \end{aligned}$	$\begin{aligned} & 0.04587 \\ & 0.03755 \\ & 0.02885 \end{aligned}$	$\begin{aligned} & 10.25 \\ & 14.32 \\ & 18.58 \end{aligned}$	$\begin{aligned} & 2.86 \\ & 2.35 \\ & 1.80 \end{aligned}$
3-1/2	4.000	STD		$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.083 \\ & 0.120 \\ & 0.226 \end{aligned}$	$\begin{aligned} & 3.834 \\ & 3.760 \\ & 3.548 \end{aligned}$	$\begin{aligned} & 1.021 \\ & 1.463 \\ & 2.680 \end{aligned}$	11.545 11.104 9.886	$\begin{aligned} & 0.08017 \\ & 0.07711 \\ & 0.06870 \end{aligned}$	$\begin{aligned} & 3.48 \\ & 4.97 \\ & 9.11 \end{aligned}$	$\begin{aligned} & 5.00 \\ & 4.81 \\ & 4.29 \end{aligned}$
		XS	80	80S	0.318	3.364	3.678	8.888	0.06170	12.50	3.84
4	4.500	STD	40	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.083 \\ & 0.120 \\ & 0.237 \end{aligned}$	$\begin{aligned} & 4.334 \\ & 4.260 \\ & 4.026 \end{aligned}$	$\begin{aligned} & 1.152 \\ & 1.651 \\ & 3.174 \end{aligned}$	$\begin{aligned} & 14.75 \\ & 14.25 \\ & 12.73 \end{aligned}$	$\begin{aligned} & 0.10245 \\ & 0.09898 \\ & 0.08840 \end{aligned}$	$\begin{gathered} 3.92 \\ 5.61 \\ 10.79 \end{gathered}$	$\begin{aligned} & 6.39 \\ & 6.18 \\ & 5.50 \end{aligned}$
		$\begin{gathered} \text { XS } \\ ----- \\ \hline \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 120 \\ 160 \end{gathered}$	$80 \mathrm{~S}$	$\begin{aligned} & 0.337 \\ & 0.438 \\ & 0.531 \\ & 0.674 \end{aligned}$	$\begin{aligned} & 3.826 \\ & 3.624 \\ & 3.438 \\ & 3.152 \end{aligned}$	$\begin{aligned} & 4.407 \\ & 5.595 \\ & 6.621 \\ & 8.101 \end{aligned}$	$\begin{gathered} 11.50 \\ 10.31 \\ 9.28 \\ 7.80 \end{gathered}$	$\begin{gathered} 0.07986 \\ 0.0716 \\ 0.0645 \\ 0.0542 \end{gathered}$	$\begin{aligned} & 14.98 \\ & 19.00 \\ & 22.51 \\ & 27.54 \end{aligned}$	$\begin{aligned} & 4.98 \\ & 4.47 \\ & 4.02 \\ & 3.38 \end{aligned}$
5	5.563	STD	40	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.109 \\ & 0.134 \\ & 0.258 \end{aligned}$	$\begin{aligned} & 5.345 \\ & 5.295 \\ & 5.047 \end{aligned}$	$\begin{aligned} & 1.868 \\ & 2.285 \\ & 4.300 \end{aligned}$	$\begin{aligned} & 22.44 \\ & 22.02 \\ & 20.01 \end{aligned}$	0.1558 0.1529 0.1390	$\begin{gathered} 6.36 \\ 7.77 \\ 14.62 \end{gathered}$	$\begin{aligned} & 9.72 \\ & 9.54 \\ & 8.67 \end{aligned}$
		$\begin{gathered} \text { XS } \\ ----- \\ \hline \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 120 \\ 160 \\ ---- \end{gathered}$	$80 \mathrm{~S}$	$\begin{aligned} & 0.375 \\ & 0.500 \\ & 0.625 \\ & 0.750 \end{aligned}$	$\begin{aligned} & 4.813 \\ & 4.563 \\ & 4.313 \\ & 4.063 \end{aligned}$	$\begin{gathered} 6.112 \\ 7.953 \\ 9.696 \\ 11.340 \end{gathered}$	$\begin{aligned} & 18.19 \\ & 16.35 \\ & 14.61 \\ & 12.97 \end{aligned}$	$\begin{aligned} & 0.1263 \\ & 0.1136 \\ & 0.1015 \\ & 0.0901 \end{aligned}$	$\begin{aligned} & 20.78 \\ & 27.04 \\ & 32.96 \\ & 38.55 \end{aligned}$	$\begin{aligned} & 7.88 \\ & 7.09 \\ & 6.33 \\ & 5.61 \end{aligned}$
6	6.625	STD	40	$\begin{gathered} \hline 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ 40 \mathrm{~S} \\ \hline \end{gathered}$	$\begin{aligned} & 0.109 \\ & 0.134 \\ & 0.280 \end{aligned}$	$\begin{aligned} & 6.407 \\ & 6.357 \\ & 6.065 \end{aligned}$	$\begin{aligned} & \hline 2.231 \\ & 2.733 \\ & 5.581 \\ & \hline \end{aligned}$	$\begin{aligned} & 32.24 \\ & 31.74 \\ & 28.89 \end{aligned}$	0.2239 0.2204 0.2006	$\begin{gathered} \hline 7.60 \\ 9.29 \\ 18.97 \end{gathered}$	$\begin{aligned} & 13.97 \\ & 13.75 \\ & 12.51 \end{aligned}$
		$\begin{gathered} \text { XS } \\ ----- \\ \hline \text { XXS } \end{gathered}$	$\begin{gathered} 80 \\ 120 \\ 160 \end{gathered}$	$\begin{gathered} \text { 80S } \\ ----- \\ ---- \end{gathered}$	$\begin{aligned} & 0.432 \\ & 0.562 \\ & 0.719 \\ & 0.864 \end{aligned}$	$\begin{aligned} & 5.761 \\ & 5.501 \\ & 5.187 \\ & 4.897 \end{aligned}$	$\begin{aligned} & 8.405 \\ & 10.70 \\ & 13.32 \\ & 15.64 \end{aligned}$	$\begin{aligned} & 26.07 \\ & 23.77 \\ & 21.15 \\ & 18.84 \end{aligned}$	$\begin{aligned} & 0.1810 \\ & 0.1650 \\ & 0.1469 \\ & 0.1308 \end{aligned}$	$\begin{aligned} & 28.57 \\ & 36.39 \\ & 45.35 \\ & 53.16 \end{aligned}$	$\begin{gathered} 11.29 \\ 10.30 \\ 9.16 \\ 8.16 \end{gathered}$
9	8.625	STD	$\begin{aligned} & 20 \\ & 30 \\ & 40 \end{aligned}$	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ ----- \\ \hline--\mathbf{S} \end{gathered}$	$\begin{aligned} & 0.109 \\ & 0.148 \\ & 0.250 \\ & 0.277 \\ & 0.322 \end{aligned}$	$\begin{aligned} & 8.407 \\ & 8.329 \\ & 8.125 \\ & 8.071 \\ & 7.981 \end{aligned}$	$\begin{gathered} 2.916 \\ 3.941 \\ 6.57 \\ 7.26 \\ 8.40 \end{gathered}$	$\begin{aligned} & 55.51 \\ & 54.48 \\ & 51.85 \\ & 51.16 \\ & 50.03 \end{aligned}$	$\begin{aligned} & 0.3855 \\ & 0.3784 \\ & 0.3601 \\ & 0.3553 \\ & 0.3474 \end{aligned}$	$\begin{gathered} 9.93 \\ 13.40 \\ 22.36 \\ 24.70 \\ 28.55 \end{gathered}$	$\begin{aligned} & 24.06 \\ & 23.61 \\ & 22.47 \\ & 22.17 \\ & 21.70 \end{aligned}$
		XS ---- XXS	$\begin{gathered} 60 \\ 80 \\ 100 \\ 120 \\ 140 \\ ---- \\ 160 \end{gathered}$		$\begin{aligned} & 0.406 \\ & 0.500 \\ & 0.594 \\ & 0.719 \\ & 0.812 \\ & 0.875 \\ & 0.906 \end{aligned}$	$\begin{aligned} & 7.813 \\ & 7.625 \\ & 7.437 \\ & 7.187 \\ & 7.001 \\ & 6.875 \\ & 6.813 \end{aligned}$	$\begin{aligned} & 10.48 \\ & 12.76 \\ & 14.96 \\ & 17.84 \\ & 19.93 \\ & 21.30 \\ & 21.97 \end{aligned}$	$\begin{aligned} & 47.94 \\ & 45.66 \\ & 43.46 \\ & 40.59 \\ & 38.50 \\ & 37.12 \\ & 36.46 \end{aligned}$	$\begin{aligned} & 0.3329 \\ & 0.3171 \\ & 0.3018 \\ & 0.2819 \\ & 0.2673 \\ & 0.2578 \\ & 0.2532 \end{aligned}$	$\begin{aligned} & 35.64 \\ & 43.39 \\ & 50.95 \\ & 60.71 \\ & 67.76 \\ & 72.42 \\ & 74.69 \end{aligned}$	$\begin{aligned} & 20.77 \\ & 19.78 \\ & 18.83 \\ & 17.59 \\ & 16.68 \\ & 16.10 \\ & 15.80 \end{aligned}$
10	10.750	STD	$\begin{gathered} ---- \\ --- \\ 20 \\ 30 \\ 40 \end{gathered}$	$\begin{gathered} 5 \mathrm{~S} \\ 10 \mathrm{~S} \\ ----- \\ \hline-- \\ 40 \mathrm{~S} \end{gathered}$	$\begin{aligned} & 0.134 \\ & 0.165 \\ & 0.250 \\ & 0.307 \\ & 0.365 \end{aligned}$	10.482 10.420 10.250 10.136 10.020	$\begin{gathered} 4.36 \\ 5.49 \\ 8.24 \\ 10.07 \\ 11.90 \end{gathered}$	$\begin{aligned} & 86.29 \\ & 85.28 \\ & 82.52 \\ & 80.69 \\ & 78.86 \end{aligned}$	$\begin{aligned} & 0.5992 \\ & 0.5922 \\ & 0.5731 \\ & 0.5603 \\ & 0.5475 \end{aligned}$	$\begin{aligned} & 15.19 \\ & 18.65 \\ & 28.04 \\ & 34.24 \\ & 40.48 \end{aligned}$	$\begin{aligned} & 37.39 \\ & 36.95 \\ & 35.76 \\ & 34.96 \\ & 34.20 \end{aligned}$
		$\begin{gathered} \text { XS } \\ ----- \\ \hline--- \\ \text { XXS } \\ \hline---- \end{gathered}$	$\begin{gathered} 60 \\ 80 \\ 100 \\ 120 \\ 140 \\ 160 \end{gathered}$		$\begin{aligned} & 0.500 \\ & 0.594 \\ & 0.719 \\ & 0.844 \\ & 1.000 \\ & 1.125 \end{aligned}$	$\begin{aligned} & 9.750 \\ & 9.562 \\ & 9.312 \\ & 9.062 \\ & 8.750 \\ & 8.500 \end{aligned}$	$\begin{aligned} & 16.10 \\ & 18.92 \\ & 22.63 \\ & 26.24 \\ & 30.63 \\ & 34.02 \end{aligned}$	$\begin{aligned} & 74.66 \\ & 71.84 \\ & 68.13 \\ & 64.53 \\ & 60.13 \\ & 56.75 \end{aligned}$	$\begin{aligned} & 0.5185 \\ & 0.4989 \\ & 0.4732 \\ & 0.4481 \\ & 0.4176 \\ & 0.3941 \end{aligned}$	54.74 64.43 77.03 89.29 104.13 115.64	$\begin{aligned} & 32.35 \\ & 31.13 \\ & 29.53 \\ & 27.96 \\ & 26.06 \\ & 24.59 \end{aligned}$

[^2]
TECHNICAL

Conversions, Equivalents, and Physical Data

American Pipe Flange Dimensions						
ASME CLASS FLANGE DIAMETER - INCHES, PER ASME B16.1, B16.5, AND B16.24						
Nominal Pipe Size	125 (Cast Iron) or 150 (Steel) ${ }^{(1)}$	250 (Cast Iron) or 300 (Steel) ${ }^{(2)}$	600	900	1500	2500
1	4.25	4.88	4.88	5.88	5.88	6.25
1-1/4	4.62	5.25	5.25	6.25	6.25	7.25
1-1/2	5.00	6.12	6.12	7.00	7.00	8.00
2	6.00	6.50	6.50	8.50	8.50	9.25
2-1/2	7.00	7.50	7.50	9.62	9.62	10.50
3	7.50	8.25	8.25	9.50	10.50	12.00
4	9.00	10.00	10.75	11.50	12.25	14.00
5	10.00	11.00	13.00	13.75	14.75	16.50
6	11.00	12.50	14.00	15.00	15.50	19.00
8	13.50	15.00	16.50	18.50	19.00	21.75
10	16.00	17.50	20.00	21.50	23.00	26.50
12	19.00	20.50	22.00	24.00	26.50	30.00
14	21.00	23.00	23.75	25.25	29.50	-- -
16	23.50	25.50	27.00	27.75	32.50	--- -
18	25.00	28.00	29.25	31.00	36.00	----
20	27.50	30.50	32.00	33.75	38.75	----
24	32.00	36.00	37.00	41.00	46.00	----
30	38.75	43.00	---	--- -	---	----
36	46.00	50.00	----	----	--- -	----
42	53.00	57.00	----	----	----	----
48	59.50	65.00				
1. Sizes 1 through 12 -inch also apply to ASME Class 150 bronze flanges. 2. Sizes 1 through 8 -inch also apply to ASME Class 300 bronze flanges.						

American Pipe Flange Dimensions												
ASME CLASS, NUMBER OF STUD BOLTS AND HOLE DIAMETER IN INCHES, PER ASME B16.1, B16.5, AND B16.24												
Nominal Pipe Size	125 (Cast Iron) or 150 (Steel) ${ }^{(1)}$		250 (Cast Iron) or 300 (Steel) ${ }^{(2)}$		600		900		1500		2500	
	No.	\varnothing										
1	4	0.50	4	0.62	4	0.62	4	0.88	4	0.88	4	0.88
1-1/4	4	0.50	4	0.62	4	0.62	4	0.88	4	0.88	4	1.00
1-1/2	4	0.50	4	0.75	4	0.75	4	1.00	4	1.00	4	1.12
2	4	0.62	8	0.62	8	0.62	8	0.88	8	0.88	8	1.00
2-1/2	4	0.62	8	0.75	8	0.75	8	1.00	8	1.00	8	1.12
3	4	0.62	8	0.75	8	0.75	8	0.88	8	1.12	8	1.25
4	8	0.62	8	0.75	8	0.75	8	0.12	8	1.25	8	1.50
5	8	0.75	8	0.75	8	1.00	8	1.25	8	1.50	8	1.75
6	8	0.75	12	0.75	12	1.00	12	1.12	12	1.38	8	2.00
8	8	0.75	12	0.88	12	1.12	12	1.38	12	1.62	12	2.00
10	12	0.88	16	1.00	16	1.25	16	1.38	12	1.88	12	2.50
12	12	0.88	16	1.12	20	1.25	20	1.38	16	2.00	12	2.75
14	12	1.00	20	1.12	20	1.38	20	1.50	16	2.25		
16	16	1.00	20	1.25	20	1.50	20	1.62	16	2.50		
18	16	1.12	24	1.25	20	1.62	20	1.88	16	2.75		
20	20	1.12	24	1.25	24	1.62	20	2.00	16	3.00		
24	20	1.25	24	1.50	24	1.88	20	2.50	16	3.50		
30	28	1.25	28	1.75								
36	32	1.50	32	2.00								
42	36	1.50	36	2.00								
48	44	1.50	40	2.00								
1. Sizes 1 through 12-inch also apply to ASME Class 150 bronze flanges. 2. Sizes 1 through 8 -inch also apply to ASME Class 300 bronze flanges.												

EN 1092-1 Cast Steel Flange Standard-PN 16 (Nominal Pressure 16 bar)							
NOMINAL BORE, mm	$\begin{array}{\|c} \text { PIPE } \\ \text { THICKNESS, } \\ \mathrm{mm} \end{array}$	FLANGE, mm			BOLTING, mm		
		Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	7,5	150	18	110	4	M16	18
50	8	165	20	125	4	M16	18
65	8	185	18	145	4	M16	18
80	8,5	200	20	160	8	M16	18
100	9,5	220	20	180	8	M16	18
125	10	250	22	210	8	M16	18
150	11	285	22	240	8	M20	23
175	12	315	24	270	8	M20	23
200	12	340	24	295	12	M20	23
250	14	405	26	355	12	M24	27
300	15	460	28	410	12	M24	27
350	16	520	30	470	16	M24	27
400	18	580	32	525	16	M27	30
500	21	715	36	650	20	M30	33
600	23	840	40	770	20	M33	36
700	24	910	42	840	24	M33	36
800	26	1025	42	950	24	M36	39
900	27	1125	44	1050	28	M36	39
1000	29	1255	46	1170	28	M39	42
1200	32	1485	52	1390	32	M45	48
1400	34	1685	58	1590	36	M45	48
1600	36	1930	64	1820	40	M52	56
1800	39	2130	68	2020	44	M52	56
2000	41	2345	70	2230	48	M56	62
2200	43	2555	74	2440	52	M56	62

EN 1092-1 Cast Steel Flange Standard-PN 25 (Nominal Pressure 25 bar)							
	PIPE THICKNESS, mm	FLANGE, mm			BOLTING, mm		
		Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	7,5	150	18	110	4	M16	18
50	8	165	20	125	4	M16	18
65	8,5	185	22	145	8	M16	18
80	9	200	24	160	8	M16	18
100	10	235	24	190	8	M20	23
125	11	270	26	220	8	M24	27
150	12	300	28	250	8	M24	27
175	12	330	28	280	12	M24	27
200	12	360	30	310	12	M24	27
250	14	425	32	370	12	M27	30
300	15	485	34	430	16	M27	30
350	16	555	38	490	16	M30	33
400	18	620	40	550	16	M33	36
500	21	730	44	660	20	M33	36
600	23	845	46	770	20	M36	39
700	24	960	50	875	24	M39	42
800	26	1085	54	990	24	M45	48
900	27	1185	58	1090	28	M45	48
1000	29	1320	62	1210	28	M52	56
1200	32	1530	70	1420	32	M52	56
1400	34	1755	76	1640	36	M56	62
1600	37	1975	84	1860	40	M56	62
1800	40	2195	90	2070	44	M64	70
2000	43	2425	96	2300	48	M64	70

Technical

Conversions, Equivalents, and Physical Data

EN 1092-1 Cast Steel Flange Standard-PN 40 (Nominal Pressure 40 Bar)							
NOMINAL BORE, mm	PIPE THICKNESS, mm	FLANGE, mm			BOLTING, mm		
		Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter
10	6	90	16	60	4	M12	14
15	6	95	16	65	4	M12	14
20	6,5	105	18	75	4	M12	14
25	7	115	18	85	4	M12	14
32	7	140	18	100	4	M16	18
40	7,5	150	18	110	4	M16	18
50	8	165	20	125	4	M16	18
65	8,5	185	22	145	8	M16	18
80	9	200	24	160	8	M16	18
100	10	235	24	190	8	M20	23
125	11	270	26	220	8	M24	27
150	12	300	28	250	8	M24	27
175	13	350	32	295	12	M27	30
200	14	375	34	320	12	M27	30
250	16	450	38	385	12	M30	33
300	17	515	42	450	16	M30	33
350	19	580	46	510	16	M33	36
400	21	660	50	585	16	M36	39
450	21	685	50	610	20	M36	39
500	21	755	52	670	20	M39	42
600	24	890	60	795	20	M45	48
700	27	995	64	900	24	M45	48
800	30	1140	72	1030	24	M52	56
900	33	1250	76	1140	28	M52	56
1000	36	1360	80	1250	28	M52	56
1200	42	1575	88	1460	32	M56	62
1400	47	1795	98	1680	36	M56	62
1600	54	2025	108	1900	40	M64	70

EN 1092-1 Cast Steel Flange Standard-PN 63 (Nominal Pressure 63 Bar)							
NOMINAL BORE, mm	PIPE THICKNESS, mm	FLANGE, mm			BOLTING, mm		
		Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter
10	10	100	20	70	4	M12	14
15	10	105	20	75	4	M12	14
25	10	140	24	100	4	M16	18
32	12	155	24	110	4	M20	23
40	10	170	28	125	4	M20	22
50	10	180	26	135	4	M20	22
65	10	205	26	160	8	M20	22
80	11	215	28	170	8	M20	22
100	12	250	30	200	8	M24	26
125	13	295	34	240	8	M27	30
150	14	345	36	280	8	M30	33
175	15	375	40	310	12	M30	33
200	16	415	42	345	12	M33	36
250	19	470	46	400	12	M33	36
300	21	530	52	460	16	M33	36
350	23	600	56	525	16	M36	39
400	26	670	60	585	16	M39	42
500	31	800	68	705	20	M45	48
600	35	930	76	820	20	M52	56
700	40	1045	84	935	24	M52	56
800	45	1165	92	1050	24	M56	62
900	50	1285	98	1170	28	M56	62
1000	55	1415	108	1290	28	M64	70
1200	64	1665	126	1530	32	M72X6	78

EN 1092-1 Cast Steel Flange Standard-PN 100 (Nominal Pressure 100 Bar)															
NOMINAL BORE, mm	PIPETHICKNESS,mm	FLANGE, mm			BOLTING, mm			NOMINAL BORE, mm	PIPE THICKNESS, mm	FLANGE, mm			BOLTING, mm		
		Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter			Outside Diameter	Thickness	Bolt Circle Diameter	Number of Bolts	Thread	Bolt Hole Diameter
10	10	100	20	70	4	M12	14	150	18	355	44	290	12	M30	33
15	10	105	20	75	4	M12	14	175	20	385	48	320	12	M30	33
25	10	140	24	100	4	M16	18	200	21	430	52	360	12	M33	36
32	12	155	24	110	4	M20	23	250	25	505	60	430	12	M36	39
40	10	170	28	125	4	M20	22	300	29	585	68	500	16	M39	42
50	10	195	30	145	4	M24	26	350	32	655	74	560	16	M45	48
65	11	220	34	170	8	M24	26	400	36	715	78	620	16	M45	48
80	12	230	36	180	8	M24	26	500	44	870	94	760	20	M52	56
100	14	265	40	210	8	M27	30	600	51	990	104	875	20	M56	62
125	16	315	40	250	8	M30	33	700	59	1145	120	1020	24	M64	70

EN 1092-1 Pressure/Temperature Ratings for Cast Steel Flanges									
PN	MATERIAL GROUP	MAXIMUM ALLOWABLE PRESSURE, PSIG (bar) ${ }^{(1)}$							
		$\begin{gathered} 14 \text { to } 212^{\circ} \mathrm{F} \\ \left(-10 \text { to } 100^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 302^{\circ} \mathrm{F} \\ \left(150^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 392^{\circ} \mathrm{F} \\ \left(200^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 482^{\circ} \mathrm{F} \\ \left(250^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 572^{\circ} \mathrm{F} \\ \left(300^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 662^{\circ} \mathrm{F} \\ \left(350^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 707^{\circ} \mathrm{F} \\ \left(375^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	$\begin{gathered} 752^{\circ} \mathrm{F} \\ \left(400^{\circ} \mathrm{C}\right) \end{gathered}$
16	1C1	$232(16,0)$	226 (15,6)	$219(15,1)$	209 (14,4)	$194(13,4)$	186 (12,8)	180 (12,4)	$157(10,8)$
	1C2	$218(15,0)$	$218(15,0)$	218 (15,0)	225 (15,5)	216 (14,9)	206 (14,2)	$199(13,7)$	$157(10,8)$
25	1C1	$363(25,0)$	$354(24,4)$	$344(23,7)$	326 (22,5)	303 (20,9)	290 (20,0)	281 (19,4)	$245(16,9)$
	1C2	$363(25,0)$	363 (25,0)	363 (25,0)	363 (25,0)	$338(23,3)$	322 (22,2)	310 (21,4)	$245(16,9)$
40	1C1	$580(40,0)$	$567(39,1)$	550 (37,9)	522 (36,0)	486 (33,5)	463 (31,9)	451 (31,1)	$392(27,0)$
	1C2	$580(40,0)$	580 (40,0)	580 (40,0)	580 (40,0)	$540(37,2)$	516 (35,6)	496 (34,2)	$392(27,0)$
63	1C1	$914(63,0)$	$892(61,5)$	$864(59,6)$	$824(56,8)$	$764(52,7)$	730 (50,3)	$711(49,0)$	$616(42,5)$
	1C2	$914(63,0)$	$914(63,0)$	914 (63,0)	914 (63,0)	$851(58,7)$	812 (56,0)	$780(53,8)$	616 (42,5)
100	1C1	1450 (100)	1417 (97,7)	1374 (94,7)	1307 (90,1)	1252 (86,3)	1157 (79,8)	$1128(77,8)$	$979(67,5)$
	1C2	1450 (100)	1450 (100)	1450 (100)	1450 (100)	1350 (93,1)	$1289(88,9)$	1239 (85,4)	979 (67,5)

Conversions, Equivalents, and Physical Data

Drill Sizes for Pipe Taps			
NOMINAL PIPE SIZE, (INCHES)	TAP DRILL SIZE, (INCHES)	NOMINAL PIPE SIZE, (INCHES)	TAP DRILL SIZE, (INCHES)
1/8	11/32	1-1/2	1-23/32
1/4	7/16	2	2-3/16
3/8	19/32	2-1/2	2-9/16
1/2	23/32	3	3-3/16
3/4	15/16	4	4-3/16
1	1-5/32	5	5-5/16
1-1/4	1-1/2	6	6-5/16

Standard Twist Drill Sizes								
DESIGNATION	DIAMETER (IN.)	AREA (SQ. IN.)	DESIGNATION	DIAMETER (IN.)	AREA (SQ. IN.)	DESIGNATION	DIAMETER (IN.)	AREA (SQ. IN.)
1/2	0.5000	0.1963	3	0.213	0.03563	3/32	0.0938	0.00690
31/64	0.4844	0.1843	4	0.209	0.03431	42	0.0935	0.00687
15/32	0.4688	0.1726	5	0.2055	0.03317	43	0.0890	0.00622
29/64	0.4531	0.1613	6	0.204	0.03269	44	0.0860	0.00581
7/16	0.4375	0.1503	13/64	0.2031	0.03241	45	0.0820	0.00528
27/64	0.4219	0.1398	7	0.201	0.03173	46	0.0810	0.00515
Z	0.413	0.1340	8	0.199	0.03110	47	0.0785	0.00484
13/32	0.4063	0.1296	9	0.196	0.03017	5/64	0.0781	0.00479
Y	0.404	0.1282	10	0.1935	0.02940	48	0.0760	0.00454
Z	0.397	0.1238	11	0.191	0.02865	49	0.0730	0.00419
25/64	0.3906	0.1198	12	0.189	0.02806	50	0.0700	0.00385
W	0.386	0.1170	3/16	0.1875	0.02861	51	0.0670	0.00353
V	0.377	0.1116	13	0.185	0.02688	52	0.0635	0.00317
3/8	0.375	0.1104	14	0.182	0.02602	1/16	0.0625	0.00307
U	0.368	0.1064	15	0.1800	0.02554	53	0.0595	0.00278
23/64	0.3594	0.1014	16	0.1770	0.02461	54	0.0550	0.00238
T	0.358	0.1006	17	0.1730	0.02351	55	0.0520	0.00212
S	0.348	0.09511	11/64	0.1719	0.02320	3/64	0.0473	0.00173
11/32	0.3438	0.09281	18	0.1695	0.02256	56	0.0465	0.001698
R	0.339	0.09026	19	0.1660	0.02164	57	0.0430	0.001452
Q	0.332	0.08657	20	0.1610	0.02036	58	0.0420	0.001385
21/64	0.3281	0.08456	21	0.1590	0.01986	59	0.0410	0.001320
P	0.323	0.08194	22	0.1570	0.01936	60	0.0400	0.001257
0	0.316	0.07843	5/32	0.1563	0.01917	61	0.039	0.001195
5/16	0.3125	0.07670	23	0.1540	0.01863	62	0.038	0.001134
N	0.302	0.07163	24	0.1520	0.01815	63	0.037	0.001075
19/64	0.2969	0.06922	25	0.1495	0.01755	64	0.036	0.001018
M	0.295	0.06835	26	0.1470	0.01697	65	0.035	0.000962
L	0.29	0.06605	27	0.1440	0.01629	66	0.033	0.000855
9/32	0.2813	0.06213	9/64	0.1406	0.01553	67	0.032	0.000804
K	0.281	0.06202	28	0.1405	0.01549	1/32	0.0313	0.000765
J	0.277	0.06026	29	0.1360	0.01453	68	0.031	0.000755
1	0.272	0.05811	30	0.1285	0.01296	69	0.0292	0.000670
H	0.266	0.05557	1/8	0.1250	0.01227	70	0.028	0.000616
17/64	0.2656	0.05542	31	0.1200	0.01131	71	0.026	0.000531
G	0.261	0.05350	32	0.1160	0.01057	72	0.025	0.000491
F	0.257	0.05187	33	0.1130	0.01003	73	0.024	0.000452
E 1/4	0.2500	0.04909	34	0.1110	0.00968	74	0.0225	0.000398
D	0.246	0.04753	35	0.1100	0.00950	75	0.021	0.000346
C	0.242	0.04600	7/64	0.1094	0.00940	76	0.020	0.000314
B	0.238	0.04449	36	0.1065	0.00891	77	0.018	0.000254
15/64	0.2344	0.04314	37	0.1040	0.00849	78	0.016	0.000201
A	0.234	0.04301	38	0.1015	0.00809	1/64	0.0156	0.000191
1	0.228	0.04083	39	0.0995	0.00778	79	0.0145	0.000165
2	0.221	0.03836	40	0.0980	0.00754	80	0.0135	0.000143
7/32	0.2188	0.03758	41	0.0960	0.00724	---	---	-- -
Note: Designation	in fractions of an	ch, in standard tw	ill letters, or in st	ard twist drill num	, the latter being	same as steel wi	auge numbers.	

Abstract

Absolute Pressure (abs press) - Gauge pressure plus barometric pressure. Absolute pressure can be zero only in a perfect vacuum. Absolute Viscosity (abs visc) - The product of fluid kinematic viscosity times its density. Absolute viscosity is a measure of fluid tendency to resist flow, without regard to its density. Sometimes the term dynamic viscosity is used in place of absolute viscosity. Refer to Viscosity, Absolute.

Accuracy - A measure of how close a regulator can keep downstream pressure $\left(\mathrm{P}_{2}\right)$ to the setpoint. Regulator accuracy is expressed as percent droop or proportional band or offset in percent of setpoint or in units of pressure.

ACFH - Actual Cubic Feet per Hour. The actual volume of fluid measured by the meter. This is not SCFH (standard cubic feet per hour).

Active/Working Regulator - A regulator that is in service performing a control function.
Adjusting Screw - A screw used to change the compression setting of a loading spring.
AGA - The American Gas Association or Australian Gas Association.
Airsets - See Filter/Supply Regulators.
ALPGA - Australian Liquefied Petroleum Gas Association, Ltd.
ANSI - American National Standards Institute.
API - American Petroleum Institute.
Appliance (Equipment) - Any device that uses gas as a fuel or raw material to produce light, heat, power, refrigeration, or air conditioning.
ASME - American Society of Mechanical Engineers.
Aspirator - Any device using fluid velocity effect to produce a low-pressure zone. Used in regulator control and combustion systems.
Atmospheric Pressure - The pressure exerted by the atmosphere at a given location and time. Sea level pressure is approximately 14.7 pounds per square inch absolute (1.0 bar absolute).

Automatic Control System - A control system that operates without human intervention.
Automatic Cutoff - A device used on some regulators to close the main valve in the event of pressure deviation outside of a preset range. Must be reopened manually.

B

Backpressure Regulator - This is a device that controls and responds to changes in its upstream/inlet pressure. Functions the same as a relief valve in that it opens on increasing upstream pressure.

Barometer - An instrument for measuring atmospheric pressure, usually in inches, centimeters, or millimeters of mercury column.
Barometric Pressure - The atmospheric pressure at a specific place according to the current reading of a barometer.
Bellows - A flexible, thin-walled cylinder made up of corrugations one next to the other that can expand or contract under changing pressures.
Bimetallic Thermal System - A device working on the difference in coefficient of expansion between two metals to produce the power to position a valve plug in response to temperature change.

Bleed - Removal of fluid from a higher pressure area to a lower pressure area in a regulator pilot system.
Bode Diagram - A plot of log amplitude ratio and phase values on a log frequency base for a transfer function. (It is a common form of graphically presenting frequency response data.)

Body - Pressure retaining shell enclosing the restricting element.
Boiler - A closed vessel in which a liquid is heated or vaporized.
Bonnet - The regulator component that connects the valve body to the actuator.

Glossary of Terms

Boost - The increase in control pressure above setpoint as flow is increased from low flow to maximum flow. Some regulators exhibit droop instead of boost.

British Thermal Unit (BTU) - The quantity of heat required to raise one pound of water from 59° to $60^{\circ} \mathrm{F}$.
Build-up - In a relief valve, the pressure increase above setpoint required to produce a given flow rate.
BSPT - British Standard Pipe Thread.

C

\mathbf{C}_{1} - A term used in a sizing equation. It is defined as the ratio of the gas sizing coefficient and the liquid sizing coefficient and provides a numerical indicator of the valve's recovery capabilities.

Cage - A hollow, cylindrical trim element that is a guide to align the movement of a valve plug with a seat ring and/or retains the seat ring in the valve body. The walls of the cage contain openings that usually determine the flow characteristic of the control valve.

Capacity, Flow - The amount of a specified fluid that will flow through a valve, specific length and configuration of tubing, a manifold, fitting, or other component at a specified pressure drop in a fixed period of time. (SCFH, gpm, $\mathrm{Nm}^{3} / \mathrm{h}, \mathrm{Lpm}, \mathrm{bph}$).

Capacity, Rated - The rate of flow through the regulator specified by the manufacturer for a given inlet pressure, outlet pressure, offset, and size.

Capacity, Wide-Open - If a wide-open failure occurs, this is the amount a regulator will flow.
Cavitation - A phenomenon whereby liquid flowing through a valve under reduced pressure will form gaseous bubbles that will collapse upon pressure recovery, producing potential trim damage. This is a concern when high-pressure drops exist across the valve.

Centipoise - A unit for measurement of absolute viscosity. One centipoise is equal to one hundredth of a poise, the metric (cgs) unit of absolute viscosity. The absolute viscosity of water at $20^{\circ} \mathrm{C}$ is approximately one centipoise.

Centistoke - A unit for measurement of kinematic viscosity. One centistoke is equal to one hundredth of a stoke, the metric (cgs) unit of kinematic viscosity. The kinematic viscosity in centistokes times the density equals the absolute viscosity in centipoises.

CFH - Cubic Feet per Hour ($\mathrm{ft}^{3} / \mathrm{h}$). Volumetric measurement of gas flow per hour, generally at line conditions.
\mathbf{C}_{g} (Flow Coefficient) - A term used in gas and steam valve sizing equations. The value of C_{g} is proportional to flow rate and is used to predict flow based on physical size or flow area.

CGA - Canadian Gas Association.
Coal/Coke Oven Gas - A gas with a high sulfur content that is produced from baking coal. It may also contain tar that can cause sticking in moving parts of a regulator. Regulators with brass or copper parts should not be used with this gas. Often this gas requires the use of fluoroelastomers.

Compressibility Effect - The change in density of gas or air under conditions of compression.
Compression (Spring) - The action on a spring which decreases its length relative to the force to which it is subjected.
Condensate - The liquid resulting when a vapor is cooled and/or when its pressure is increased.
Control Line - The external piping which connects the regulator actuator or pilot to the point on the main line where control is required.
Control Valve - A mechanically, electrically, or hydraulically operated valve, using an external power source to effect its operation, that modifies the fluid flow characteristics in a process. It consists of a valve connected to an actuator mechanism that is capable of changing the position of the flow controlling element or closure member in the valve in response to a signal from the controlling device.

Controller - A device that operates automatically to regulate a controlled variable.
Critical Flow - The rate at which a fluid flows through an orifice when the stream velocity at the orifice is equal to the velocity of sound in the fluid. Under such conditions, the rate of flow may be increased by an increase in upstream pressure, but it will not be affected by a decrease in downstream pressure. Critical flow occurs when P_{2} is approximately $1 / 2$ of P_{1} absolute.

Critical Velocity - The velocity at critical flow. Also called sonic velocity.

CSA - Canadian Standards Association.
\mathbf{C}_{s} (Flow Coefficient) - Steam valve sizing coefficient. At pressures below 1000 psig , a constant relationship exists between the gas sizing coefficient $\left(\mathrm{C}_{\mathrm{g}}\right)$ and the steam coefficient $\left(\mathrm{C}_{\mathrm{s}}\right)$. This relationship is expressed: $\mathrm{C}_{\mathrm{s}}=\mathrm{C}_{\mathrm{g}} \div 20$.
\mathbf{C}_{v} (Flow Coefficient) - Liquid sizing coefficient. It is numerically equal to the number of U.S. Gallons of water at $60^{\circ} \mathrm{F}$ that will flow through the valve in one minute when the pressure differential across the valve is one pound per square inch.

D

Dead Band - The range through which an input can be varied without initiating observable response.
Delta P (DP) ($\Delta \mathbf{P}$) (Pressure Drop) - The difference between the inlet and outlet pressures.
Demand - The rate at which fluid is delivered to or required by a system, part of a system, or a piece of equipment, usually expressed in terms of volume per unit of time.

Density - The weight of a unit volume of a substance. Also called specific weight.
Diaphragm - A flexible membrane used in a regulator or relief valve to sense changes in downstream pressure and respond to them, thus moving the restricting element or closure member to which it is attached.

Diaphragm Actuated Regulator - A regulator utilizing a diaphragm and actuator to position the valve plug.
Diaphragm Case - A housing used for supporting a diaphragm and establishing one or two pressure chambers.
Diaphragm Effect - The change in effective area of the diaphragm as the regulator strokes from low to high flow.
Diaphragm Plate - A plate used to transmit force in conjunction with a diaphragm and fluid pressure on a spring to the actuator stem or pusher post.

Differential Pressure - The difference in pressure between two points in a system.
Differential Pressure Regulator - A device that maintains a constant differential pressure between a reference pressure and the pressure of the controlled fluid.

Digester Gas - A gas produced by sewage treatment plants. This gas is used to power burners and engines. Because of its high methane content, stainless steel construction might be required.

Disk - A movable part that is positioned in the flow path to modify the rate of flow through the valve. It is often made of an elastomer material to improve shutoff capability.

Downstream - Any site beyond a reference point (often a valve or regulator) in the direction of fluid flow.
Drift - A change in setpoint over an extended period of time.
Droop - The amount a regulator deviates below its setpoint as flow increases. Some regulators exhibit boost instead of droop.
DVGW - Deutscher Verein des Gas - und Wasserfaches e.v. (German approval agency).
Dynamic Unbalance - The force exerted on a valve plug when fluid is flowing through the valve.
\qquad

Effective Area - In a diaphragm actuator, the part of the diaphragm area that generates operating force. The effective area is less than the total area. (The effective area of a diaphragm might change as it is stroked, usually being a maximum at the start and a minimum at the end of the travel range. Molded diaphragms have less change in effective area than flat-sheet diaphragms.)

End Connection - The style of joint used to make a pressure tight connection between the valve body and the pipeline.
Entropy - A thermodynamic quantity that measures the fraction of the total energy of a system that is not available for doing work.

Glossary of Terms

Enthalpy - Total heat content, expressed in BTU per pound, above an arbitrary set of conditions chosen as the base or zero point.
External Pressure Registration - A regulator with a control line. The actuator pressure is isolated from the body outlet pressure within the regulator.

External Static Line - The same as control line.

Face-to-Face Dimension - The dimension from the face of the inlet opening to the face of the outlet opening of the regulator.
Fail-Closed - In the event of a regulator failure, a condition wherein the valve port remains closed. All regulators can fail open or closed.
Fail-Open - In the event of a regulator failure, a condition wherein the valve port remains open. All regulators can fail open or closed.
Filter/Supply Regulators - Pressure reducing regulators used in air service to simultaneously filter and reduce pressure. Used to supply process control instruments pneumatic power. Also called airsets.

First-Stage Regulator - A regulator used to reduce inlet pressure to a set value being fed to another regulator in series.
Fixed Factor Measurement - The measurement of gas at a controlled elevated pressure without the use of an automatic correcting device to correct the volume for variation from base or contract pressure. This is accomplished by placing an accurate regulator upstream of the meter. Also known as PFM (Pressure Factor Measurement).

Fixed Restriction - A small diameter hole in the pilot or piloting system that determines gain.
Flange - End connections of regulator valve bodies used for bolting onto another fitting or pipe element.
Flange Facing - The finish on the end connection of valves.
Flashing - A condition when liquid changes to the vapor state caused by pressure reduction inside a valve.
Flow Capacity - The rated flow through a regulator under stated inlet, outlet, and droop pressures.
Flow Characteristic - Relationship between flow through the valve and percent rated travel.
Flow Coefficient - See $\mathrm{C}_{\mathrm{v}}, \mathrm{C}_{\mathrm{s}}, \mathrm{C}_{\mathrm{g}}, \mathrm{C}_{1}$.
Flow Rate - The amount (mass, weight, or volume) of fluid flowing through a valve body per unit of time.
Fluid - Materials in a liquid, gas, or vapor state, as opposed to a solid.
Fuel Gas - A commonly distributed gas used for fuel, such as natural gas, propane, landfill gas, etc.
Full Capacity Relief - A relief valve that has the capability of maintaining downstream pressure to within certain limits in the event of some type of failure, by venting the excess gas to the atmosphere.

G

Gage Pressure - (Psig or bar g) The difference between atmospheric pressure and the pressure being measured. Also written gauge pressure.
Gas - That state of matter which expands to fill the entire container which holds it. Gas is one of the forms of matter (solid, liquid, and gas).
Gas Utilization Equipment - Any device which utilizes gas as a fuel or raw material, or both.
Gauge Pressure - Pressure reading as shown on a gauge (psig or bar g). The difference between atmospheric pressure and the pressure the gauge is measuring. Also written gage pressure.

Gauge, Pressure - An instrument that measures the pressure of a fluid.
Governor - An attachment to a machine for automatic control or limitation of speed. Also, an archaic term used for a low-pressure, directoperated, pressure reducing gas regulator.

Hard Facing - A material harder than the surface to which it is applied. Used to resist galling or fluid erosion.
Header - A piping configuration where a number of pipes are combined at one location.
Hunting - A condition in which a regulator's outlet pressure slowly fluctuates on either side of a setpoint.
Hysteresis - A deviation from setpoint caused by friction and parts clearance.

Impulse Line - See control line.
Inch of Water - A unit of pressure measurement. The pressure required to support a column of water one inch high. Typically reported as inches w.c. (water column); 27.68 -inches of water is equal to one pound per square inch (psi).

Inlet Pressure - The pressure at the inlet opening of a valve (P_{1}).
Inlet Pressure Sensitivity - The increase or decrease in the outlet pressure caused by changes in the inlet pressure which results in differing degrees of force being applied to the seat disk and diaphragm.

Internal Relief Valve - A small, spring-loaded pressure relief valve contained within the regulator at the center of the diaphragm to prevent outlet pressure from exceeding a predetermined pressure.

Isolation Valve - Refer to Valve, Isolation.
I/O - Input/Output -- Electrical inputs and electrical outputs.

J-K - L

$\mathbf{K}_{\mathbf{m}}$ - Value recovery coefficient - used in liquid sizing equations to determine $\Delta \mathrm{P}$ allowable for cavitation.
Kinematic Viscosity (kin visc) - The relative tendency of fluids to resist flow. The value of the kinematic viscosity includes the effect of the density of the fluid. The kinematic viscosity is equal to the absolute viscosity divided by the density. Refer to Viscosity, Kinematic.

LCD - Liquid crystal display; readout panel which displays alphanumeric sequences in digital format.
Landfill Gas - A gas produced by decaying organic matter in a garbage landfill. This gas is used to power burners and engines. This gas has a high methane content and may contain other gases; therefore, stainless steel construction is usually required.

Liquid Expansion Thermal System - A closed system containing liquid whose expansion and contraction in response to temperature changes provides the power to position a valve member.

Liquefied Petroleum Gas (LPG) - Butane, propane, or a mixture of the two, obtained from oil or gas wells, or as a by-product from the refining of gasoline. It is sold in metal bottles under pressure as a liquid; hence, sometimes called bottled gas.

Loading Element - In a regulator, the means for placing a measured amount of force against the regulator's diaphragm. The loading element is commonly a spring.

Loading Pressure - The pressure employed to position a pneumatic actuator. (This is the pressure that actually works on the actuator diaphragm or piston to change the position of the valve plug.)

Lockup Pressure - Increase over setpoint when the regulator is at no-flow condition.

Glossary of Terms

Maximum Allowable Operating Pressure (MAOP) - The maximum pressure that the system may be operated at as determined by its components, taking into account function and a factor of safety based on yield of parts or fracture.

Maximum Operating Pressure - The maximum pressure existing in a piping system during normal operation.
Measuring Element - A diaphragm that senses (measures) changes in downstream pressure and causes the regulator restricting element to move toward the open or closed position.

Meters Cubed per Hour (Normal or Standard) - Refer to $\mathrm{Nm}^{3} / \mathrm{h}$ or $\mathrm{Sm}^{3} / \mathrm{h}$.
Minimum Controllable Flow - The lowest flow at which a steady regulated condition of the controlled variable can be maintained.
Modbus - Protocol used for communications between electronic devices developed by Gould Modicon.

NACE - National Association of Corrosion Engineers
Natural Gas - A hydrocarbon gas consisting mainly of methane.
Needle Valve - Refer to Valve, Needle.
$\mathbf{N m}^{3} / \mathbf{h}$ - meters cubed per hour (normal); measurement of volume rate of a gas at atmospheric pressure and $0^{\circ} \mathrm{C}$. Also refer to $\mathrm{Sm}^{3} / \mathrm{h}$.
NPT - National Pipe Thread, a standard for tapered thread used on pipes and pipe fittings.
Offset - The deviation from setpoint for a given flow. Negative offset is equivalent to droop.
Operating Pressure - The actual pressure at which a device operates under normal conditions. This pressure may be positive or negative with respect to atmospheric pressure.

Orifice - A fixed opening, normally the inside diameter of a seat ring, through which fluid passes. The term can also refer to the inlet or outlet of a regulator or pilot valve. Also called a port.

Outlet Pressure (Reduced Pressure) - The pressure leaving the outlet opening of a valve (P_{2}).
Over-Pressure Cut-Off Device - A mechanical device incorporated in a gas pipework system to shutoff the supply of gas when the pressure at the sensing point rises to a predetermined value.

P
\mathbf{P}_{1} - Inlet or upstream pressure.
\mathbf{P}_{2} - Outlet or downstream pressure.
PFM (Pressure Factor Measurement) - The measurement of gas at a controlled elevated pressure without the use of an automatic correcting device to correct the volume for variation from base or contract pressure. This is accomplished by placing an accurate regulator upstream of the meter. Also known as Fixed Factor Measurement

PID - Proportional/Intergral/Derivative device. Usually used as a controller.
Pilot (Amplifier) - A relatively small controlling regulator that operates the main regulator. They are used to increase accuracy.
Piston Actuated Regulator - A regulator utilizing a piston rather than a diaphragm actuator.
Pitot Tube - A hollow tube that connects the area beneath the regulator diaphragm with the vena contracta area of gas flow. The pitot tube causes the diaphragm to sense a pressure lower than that which exists downstream of the regulator, and thus allows the regulator to open more for any given change in downstream pressure. The result is increased regulator accuracy.
\mathbf{P}_{L} - Loading pressure. Pressure of fluid on the main diaphragm that is controlled by a pilot regulator.
Plug - Piece that throttles against an orifice to increase and decrease flow.
Poise - A metric unit for measuring absolute viscosity. One poise equals one dynesecond per square centimeter, or one gram per centimeter second.
Port - A fixed opening, normally the inside diameter of a seat ring, through which fluid passes. The term can also refer to the inlet or outlet of a regulator or pilot valve. Also called an orifice.

Powder Paint Coating - A paint process that uses dry powder with no solvents for surface finish. Dry powder can be reused, thereby reducing waste and pollutants. The powder coating over a clean surface provides better corrosion resistance than liquid coat.

Pressure - Force per unit area.
Pressure Buildup - In a relief valve, the pressure increase above setpoint required to produce a given flow rate.
Pressure Differential - The difference in pressure between two points in a system.
Pressure Drop - The difference between the inlet and outlet pressures.
Pressure Reducing Regulator - A valve that satisfies downstream demand while maintaining a constant reduced pressure. As the pressure decreases, the valve opens to increase flow.

Pressure Relief Valve - A valve that opens and closes to ensure that pressure does not rise above a predetermined value.
Propane - An easily liquefiable hydrocarbon gas. Propane is one of the components of raw natural gas, and it is also derived from petroleum refining processes. Its chemical formula is $\mathrm{C}_{3} \mathrm{H}_{8}$.

Proportional Band (Amount of Deviation) - The amount a regulator deviates from setpoint as the flow increases from minimum to maximum. Also referred to as droop or offset.
psia - pounds per square inch, absolute - The pressure above a perfect vacuum, calculated from the sum of the pressure gauge reading and the (local or ambient) atmospheric pressure (approximately 14.7).
psid - Pounds per square inch, differential.
psig - Pounds per square inch, gauge. The pressure above atmospheric pressure. Near sea level the atmospheric pressure is approximately 14.7 pounds per square inch.

Q-R

Range - The region between the limits within which a quantity is measured, received, or transmitted, expressed by stating the lower and upper range values (Example: 3 to $15 \mathrm{psi} ;-40^{\circ}$ to $212^{\circ} \mathrm{F}\left(-40^{\circ}\right.$ to $\left.100^{\circ} \mathrm{C}\right)$).

Rangeability - The ratio of maximum rated capacity to the minimum controllable flow within the specified accuracy band.
Rate of Flow - The volume of material passing a given point in a system per unit of time.
Rated Working Pressure - The maximum allowable pressure specified by the manufacturer.
Reduced Pressure - The pressure leaving the outlet opening of a valve (P_{2}). More commonly called outlet pressure.
Regulator, Direct-Operated - See Pressure Reducing Regulator.
Regulator, Pilot-Operated - Two regulators connected so that one increases the effect of downstream pressure changes on the other. This arrangement is used to provide increased accuracy and flow capacity compared to direct-operated regulators.

Relief Valve - See Pressure Relief Valve.
Relief Valve, Pilot-Operated - Two relief valves connected so that one increases the effect of inlet pressure changes on the other. This arrangement is used to provide increased capacity and reduced buildup compared to other relief valve types.

Relief Valve, Pop Type - A spring-loaded poppet type relief valve.
Repeatability - The closeness of agreement of a regulated value when returned to the same steady-state conditions after upset(s).

Glossary of Terms

Reseat Point - In a relief/backpressure valve which is opened by an increase in inlet pressure, the point where the valve closes.
Restricting Element - The element that restricts and controls fluid flow in a system. In a regulator this element is typically a disk and orifice combination, or plug and cage assembly.

RTD - Resistance Temperature Detector. A resistance device used to measure temperature.
RTU - Remote Terminal Unit or Remote Telemetry Unit.

S

SAE Number Viscosity - Refer to Viscosity, SAE Number.
Saybolt Furol - A scale used for measuring the viscosity of heavy oils. The instrument has a larger orifice and is used at a higher temperature than the Saybolt Universal instrument used for lighter oils.

Saybolt Universal - A scale used for measuring the viscosity of oil, expressed in seconds required for a specified amount of oil to flow through an orifice; hence, the larger the number of seconds, Saybolt Universal (SSU), the more viscous the oil.

SCFH - Standard cubic feet per hour. Volumetric gas measurement of flow per hour at standard or at base conditions.
Seat - The portion of the seat ring or valve body which a closure member contacts for shutoff.
Seat Leakage - Flow of fluid past a seat or seal when in the closed position.
Seat Ring - A separate piece inserted in a valve body to form a valve body port. It generally provides a seating surface for a plug or disk.
Self-Contained Regulator - Pressure control device that is powered by the process media pressure and does not require outside energy.
Setpoint - The pressure at which the regulator or relief valve is set to control.
Set Pressure Range - The range of pressures, specified by the manufacturer, within which the device can be adjusted.
$\mathbf{S m}{ }^{3} / \mathbf{h}$ - meters cubed per hour (standard); measurement of volume rate of a gas at atmospheric pressure and $60^{\circ} \mathrm{F}$. Also refer to $\mathrm{Nm}^{3} / \mathrm{h}$.
Soft Seat - An elastomeric, plastic, or other readily deformable material used either in the valve plug or seat ring to provide tight shutoff with minimal force.

Sonic Velocity - The speed of sound for a particular gas at a given inlet pressure and temperature.
Sour Gas - Gaseous fuel that contains a relatively large proportion of sulfur or sulfur compounds. See the discussion on Sulfide Stress Cracking in the Technical Section.

Specific Gravity - The ratio of weight of a given volume of fluid to the weight of an equal volume of liquid/gas at stated temperature.
Speed of Response (Stroking Speed) - The amount of time it takes the valve plug or disk to travel from completely closed to completely open (0 to 100%).

Spring - Part used as the loading element in a regulator. Length is adjusted to establish setpoint.
Spring Adjustment Screw - A screw used to compress the spring to establish the regulator setpoint.
Spring Rate (K) - Spring rate is defined by the amount of force required to compress a spring a given distance. Spring rate is given in force/ length (for example, lbf/in).

Stability - The ability to hold a steady controlled variable within the limits of stated accuracy of regulation.
Standard Atmosphere - The accepted normal atmospheric pressure at sea level, equal to 14.696 pounds per square inch.
Standard Barometer - The reading of a barometer for standard atmospheric pressure; equal to 29.92 inches of mercury column.
Standard Gravity - Standard accepted value for the force of gravity. It is equal to the force which will produce an acceleration of 32.17 feet per second per second.

Standard Pressure - The same as standard atmosphere; equal to a pressure of 14.696 pounds per square inch.

Static Line - See Control Line.
Static Pressure - The pressure in a fluid at rest.
Static Unbalance - The force exerted on a valve plug due to fluid pressure in the non-flowing condition.
Stoke - The cgs unit of kinematic viscosity. One stoke equals one centimeter squared per second.
Supercompressibility - Many gases are more compressible under high pressure at ordinary temperatures than indicated by Boyle's Law. These gases, measured at the high pressures, will occupy a greater volume when the pressure is reduced to near atmospheric pressure.

SUS (or SSU) Viscosity - Refer to Viscosity, SUS (or SSU).

T-U

Therm - 100,000 BTU.
Thermostat - A device that automatically maintains a predetermined temperature in an appliance or component.
Travel - The amount of linear movement of the valve closure member from the closed position to the rated full-open position.
Travel Indicator - An external, visible device used to indicate the travel of the valve plug.
Trim - The replaceable internal parts of a regulator, usually made up of a seat ring or orifice, valve plug or disk and disk holder, and stem; other replaceable internal parts may be considered trim.

Under-Pressure Cut-Off Device - A mechanical device incorporated in a gas pipe work system to shutoff the supply of gas when the pressure at the sensing point falls to a predetermined figure.

V-W

Vacuum Breaker - A valve used to limit an increase in vacuum. An increase in vacuum (decrease in absolute pressure) beyond a certain value registers on the diaphragm. The valve disk will open permitting atmospheric, positive pressure, or an upstream vacuum that has a higher absolute pressure than the downstream vacuum, to enter the system and restore to setpoint.

Vacuum Regulator - A device that maintains a vacuum at a setpoint. A decrease in this vacuum (increase in absolute pressure) beyond this value registers underneath the diaphragm and opens the valve. This permits the downstream vacuum of lower absolute pressure than the upstream vacuum to restore the upstream vacuum to its original pressure setting.

Valve - A device used for the control of fluid. It consists of a fluid retaining assembly, one or more parts between end openings, and a movable closure member which opens, restricts, or closes the port(s).

Valve Body - A pressure retaining housing for internal parts having inlet and outlet flow connections.
Valve Closure Member - The movable part which is positioned in the flow path to modify the rate of flow through the valve, often made of an elastomer material to improve shutoff.

Valve Linkage - A lever or levers connecting the diaphragm to the valve plug or valve plug stem.
Valve Plug - A movable part which provides a variable restriction in a port.
Valve, Needle - A small, adjustable valve in which the position of a pointed plug or needle relative to an orifice or tapered orifice permits or restricts fluid flow.

Valve, Isolation - Simple valves located in the piping system used to isolate individual equipment. They are designed to be operable by hand and installed to be readily accessible to the consumer.

VDC - Volts direct current.
Vena Contracta - The location where cross-sectional area of the flow stream is at its minimum size, where fluid velocity is at its highest level, and fluid pressure is at its lowest level. (The vena contracta normally occurs just downstream of the actual physical restriction in a regulator.)

Glossary of Terms

Vent - An opening in the regulator spring case to allow atmospheric pressure access to the diaphragm, thus allowing free movement of the diaphragm during operation.

Viscosity - The tendency of a fluid to resist flow.
Viscosity, Absolute - The product of a fluid's kinematic viscosity times its density. Absolute viscosity is a measure of a fluid's tendency to resist flow, without regard to its density. Sometimes the term dynamic viscosity is used in place of absolute viscosity.

Viscosity, Kinematic - The relative tendency of fluids to resist flow. The value of the kinematic viscosity includes the effect of the density of the fluid. The kinematic viscosity is equal to the absolute viscosity divided by the density.

Viscosity, SAE Number - The Society of Automotive Engineers' arbitrary numbers for classifying fluids according to their viscosities. The numbers in no way indicate the viscosity index of fluids.

Viscosity, SUS (or SSU) - Saybolt Universal Seconds (SUS), which is the time in seconds for 60 milliliters of oil to flow through a standard orifice at a given temperature (ASTM Designation D88.56).

Volume Corrected - The volume metered times metering pressure plus atmospheric pressure/base pressure equals volume corrected.
Water Column - A unit of measurement. The pressure required to support a column of water one inch high. Typically reported as inches w.c. (water column); 27.68-inches of water is equal to one pound per square inch (psi).

Weight, Specific - The weight per unit volume of a substance. The same as density.

$X-Y-Z$

Yoke - A structure by which the diaphragm case or cylinder assembly is supported rigidly on the bonnet assembly.

[^0]: - continued -

[^1]: - continued -

[^2]: Identification, wall thickness and weights are extracted from ASME B36.10 and B39.19.
 The notations STD, XS, and XXS indicate Standard, Extra Strong, and Double Extra Strong pipe, respectively.
 Transverse internal area values listed in "square feet" also represent volume in cubic feet per foot of pipe length.

